Перспективы использования водородного двигателя. Убийца нефти: первый водородный автомобиль Toyota Mirai с мощным двигателем

После исчерпывания природных запасов нефти, людям придется полностью положиться на альтернативные виды получения энергии. Водородный двигатель, как замена ДВС, работающих на черном золоте, является одной из перспектив будущих десятилетий.

Силовые установки такого типа имеют больший КПД и меньшую степень токсичности выхлопных газов. Впрочем, главное преимущество моторов, работающих на водороде, – неограниченный запас сырья для производства топлива. Вода, именно она может стать основой топлива будущего.

Интерес к использованию водорода появился еще во время топливного кризиса 70-х годов, но первый водородный двигатель был изобретен только в начале XIX столетия. Действительное применение технология получила во время блокады Ленинграда, когда водородом заправляли лебедки аэростатов, транспорт.

Несмотря на очевидные преимущества, знания способов получения водорода и его использования для работы двигателя внутреннего сгорания, существует несколько значительных «но», замедляющих внедрение этой прогрессивной технологии.

Особенности водорода, как топлива для ДВС

  • после сгорания остается только водяной пар;
  • реакция происходит намного быстрей, чем в случаи с бензином либо дизелем;
  • детонационная устойчивость позволяет повысить степень сжатия;
  • благодаря своей летучести, водород способен проникать в самые малые полости, зазоры между деталями (лишь особые сплавы повышенной прочности способны переносить разрушительное воздействия водорода на структуру металла);
  • теплоотдача сгорания водорода в 2,5 раза больше, чем у бензиновой смеси;
  • широкий диапазон реакции. Минимальная пропорция водорода, достаточная для реакции с кислородом, составляет всего 4%. Такая особенность позволяет настраивать режимы работы двигателя, дозируя консистенцию смеси;
  • хранение водорода осуществляется в сжатом или жидком агрегатном состоянии. При пробое бака, газ под давлением испаряется.

Ввиду перечисленных выше особенностей, использования водорода, как чистого топлива для ДВС, невозможно без внедрения изменений конструкции силового агрегата, а также навесного оборудования.

Устройство и принцип работы

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Гибридные модели и возможные модификации

Благодаря большому интересу к использованию водорода в качестве топлива для ДВС, гидродвигатели внутреннего сгорания имеют различные модификации и типы исполнения.

Схема устройства гибридного водородного двигателя

Мотор, разработанный В.С. Кащеевым, имеет иное устройство. Помимо впускного клапана (6) для подачи воздуха, выпускного для вывода выхлопных газов (7), ГБЦ имеет отдельный клапан для подачи водорода (9) и свечу зажигания (10), которые находятся в предкамере (8). Последняя расположена в ГБЦ выше уровня поршня в положении НМТ.

После преодоления поршнем НМТ в камеру сгорания подается и воспламеняется водород (предварительно поршень затягивает воздух через впускные клапаны). В это же самое время открываются выпускные клапаны. Из-за разницы атмосферного давления, отработанные газы устремляются в выпускной коллектор, создавая за собой вакуум, который перемещает поршень к ВМТ и за счет импульса обратно в крайнее нижнее положение. Как видим, принцип немного отличается, но суть остается неизменной.

Технология гибридных силовых установок – это промежуточная ступень между началом использования водорода в качестве топлива и полным отказом от использования нефтепродуктов. Автомобили с моторами такого типа могут передвигаться как на бензине, так и на водороде.

Еще более широкого распространения получило применение водорода в качестве компонента топливно-воздушной смеси. Для работы ДВС используется обычное топливо и небольшая часть гремучего газа. Это позволяет повысить степень сжатия, и уменьшить токсичность выхлопных газов.

Одним из возможных путей развития двигателей на водороде является применение силовых установок с топливными элементами. Во время химической реакции водорода и кислорода выделяется энергия, которая используется для питания электродвигателей автомобиля.

Трудности эксплуатации водородных ДВС

Главное препятствие на пути внедрения технологии – это стоимость получения водорода (Н2), а также комплектующих для его хранения и транспортировки. К примеру, для сохранения сжиженного состояния нужно поддерживать стабильную температуру -253º С. Наиболее доступный способ получения Н2 – это электролиз воды. Промышленное снабжение водородом требует больших энергетических затрат. Рентабельным этот процесс сможет сделать ядерная энергетика, которой также пытаются найти рациональную альтернативу. Транспортировка и хранение газа требуют использования дорогостоящих материалов и высококачественных механизмов. К другим недостаткам водородного топлива можно отнести:

  • взрывоопасность. В замкнутом пространстве достаточная для реакции концентрация гремучего газа может спровоцировать взрыв. Усугубить ситуацию способна высокая температура воздуха. Из-за высокой степени диффузности водорода существует риск попадания Н2 в выхлопной коллектор, где реакция с горячими выхлопными газами приведет к возгоранию смеси. Роторный двигатель, ввиду особенностей компоновки, является более предпочтительным для водородного автомобиля;
  • для хранения водорода требуется емкость большого объема, а также специальные системы, препятствующие улетучиванию Н2 и обеспечивающие защиту от механических деформаций. Если для автобусов, грузовиков либо водного транспорта такая особенность не играет большой роли, то легковые автомобили теряют ценные кубометры багажного отделения;
  • в режимах высокотемпературных нагрузок водород способен провоцировать разрушительное воздействие на детали цилиндропоршневой группы и моторное масло. Применение соответствующих сплавов и смазочных материалов ведет к удорожанию производства и эксплуатации двигателей, работающих на водороде.

Перспективы развития

Автомобилестроение – далеко не единственная область, где могут применяться водородные двигатели. Водный, железнодорожный транспорт, авиация, а также различная вспомогательная спецтехника могут использовать силовые установки подобного типа.

Интерес к внедрению технологии водородных двигателей проявляют как дочерние предприятия, так и крупные автоконцерны (BMW, Volskwagen, Toyota, GM, Daimler AG и прочие). Уже сейчас на дорогах можно встретить не только опытные образцы, но и полноценные представители модельного ряда, приводимые в движение с помощью водорода. BMW 750i Hydrogen, Honda FSX, Toyota Mirai и многие другие модели отлично зарекомендовали себя во время дорожных испытаний. К сожалению, высокая стоимость водорода, отсутствие инфраструктуры заправочных станций, а также достаточного количества квалифицированных сотрудников, оборудования для ремонта и обслуживания не позволяют запустить такие автомобили в массовое производство. Оптимизация всего цикла использования гремучего газа являются первоначальной задачей области развития водородной энергетики.

На сегодняшний день практически все мировые автопроизводители ведут активные разработки машин, работающих на экологически чистом виде топлива. Специалисты говорят, что уже через 15-20 лет мир полностью перейдет на такой вид транспорта. Пока лидерство в этом деле сохраняет компания «Тойота». После выпуска знаменитого «Примуса» японцы решили пойти дальше и разработать еще один экологически чистый автомобиль - Toyota Mirai с водородным двигателем. В сегодняшней статье мы рассмотрим все особенности данной новинки, а также перечислим все преимущества и недостатки использования водородных машин.

Характеристика

«Тойота Мирай» - это один из первых седанов японского производства, который компания решила выпускать в серийном масштабе. Кстати, решение назвать данную модель Mirai было вполне оправданным, ведь в переводе с японского это слово означает «Чистое будущее».

Производитель утверждает, что первая серийная водородная Toyota отличится от своих аналогов большим запасом хода, который составит 480 километров. Этого вполне хватит как для повседневной эксплуатации в черте города, так и для семейных путешествий на большие расстояния. Но что касается дальних поездок, пока совершить их на таком авто не удастся. И здесь вопрос не в надежности конструкции (как всегда, японцы сделали машину качественно и «на века»), а в отсутствии нужных АЗС. Но об этом мы поговорим несколько позже.

Стоит отметить, что «Мирай» не самый первый в мире автомобиль с водородным двигателем. «Тойота» занимается разработкой гибридных моделей авто начиная с 1997 года. Именно тогда мировая публика увидела с водородным двигателем в виде концепт-внедорожника модели FCHV. Однако запускать его в масштабное серийное производство японцы так и не решились. Чаще всего данный джип можно было встретить в госучреждениях и организациях, которые занимались тестированием данного вида транспорта. Кстати, объединяет BMW и Toyota. Немцы заключили контракт с японскими инженерами и до 2020 года планируют создать новый экологически чистый седан BMW Hydrogen 7-й серии.

Плюсы водородного автомобиля

Для начала о преимуществах. Начнем с того, что двигатель на водородном топливе не выделяет никаких загрязняющих веществ, в отличие от дизеля и бензина. Стоит отметить и низкую себестоимость эксплуатации данного вида транспорта. Само топливо (водород) можно получать как в малых, так и крупных масштабах. Это позволит значительно стабилизировать ситуацию с постоянно меняющимися ценами на горючее и более рационально распределять в мире.

Какие имеет минусы двигатель на водородном топливе?

Теперь поговорим о недостатках. Основной минус данного вида транспорта заключается в том, что водородный двигатель («Тойота FCV» в том числе) более взрывоопасен, чем классические дизельные и бензиновые аналоги. Это объясняется особым химическим составом водорода. Кстати, кроме взрывоопасности он отличается высокой летучестью. Эта характеристика значительно усложняет транспортировку и заправку автомобилей водородом. Также эксперты говорят, что обслуживание подобной установки будет более затратным, чем например ремонт дизельного ДВС (в силу малого количества работников, знающих толк в данной сфере). Ну и, конечно же, отсутствие водородных заправочных станций. В мире таких лишь единицы, потому использовать сейчас такие автомобили весьма трудно (тем более что заправить такую машину можно только при помощи специального оборудования).

Вопросы снабжения

Основная проблема водородных авто - отсутствие АЗС, на которых их можно было бы заправлять. Именно поэтому миру более актуальны электрокары, так как они заряжаются от обыкновенной розетки и даже на ходу, если на крыше есть солнечная батарея. Но производство водородных станций уже набирает темпы. Уже известно о планах строительства 20 таких АЗС в Калифорнии. Если продажи будут расти, количество заправок увеличат вдвое. Кстати, этот штат был выбран неспроста - именно в Калифорнии начнутся старты продаж водородных «Тойот». Но о продажах мы поговорим в конце статьи, а пока давайте рассмотрим экстерьер новинки.

Дизайн

Внешний облик новой «Тойоты Мирай» весьма впечатляющий. Сразу в глаза бросается массивный агрессивный «передок» с суровым широким бампером и раскосыми фарами. Решетка радиатора - это, пожалуй, самый мелкий и незначительный элемент в экстерьере.

Но даже на таком маленьком кусочке пластика японцам удалось разместить свою фирменную эмблему, выполненную в хромированном стиле. Машина имеет хорошую площадь остекления. Особенно это касается лобового стекла. Водитель не будет чувствовать «мертвых зон», так как все события вокруг видны теперь как на ладони. Кузов имеет как угловатые, так и сглаженные, аэродинамические черты. Все это делает внешний облик седана очень свежим, современным и уникальным.

Интерьер

Внутренняя часть автомобиля словно часть космического корабля - масса кнопок, экранов, датчиков и всякой другой всячины. Что интересно, японцы не решились тратить деньги на разработку двух вариантов компоновки интерьера - для европейского и для внутреннего рынка. Проблему с перестановкой руля они решили очень просто, разместив все важные информационные приборы посредине торпеды.

Сама панель размещена впритык к лобовому стеклу и растянута по всей его ширине. Дальше от нее размещен массивный бортовой компьютер, который оснащен встроенной функцией навигатора. Ниже него есть еще один дисплей. А разделяют их два широких воздуховода. Такие же дублируются по бокам у зеркал, только с хромированной окантовкой в углу. Рулевое колесо тоже оснащено кнопками дистанционного управления. Ручки КПП в салоне нет - вероятнее всего, используется вариатор или АКПП. Динамики размещены в дверях, также как и кнопки управления электростеклоподъемниками. Рулевое колесо имеет удобный хват. В целом, компоновка салона очень эргономичная. И даже невзирая на массу кнопок (тем более что половина из них сенсорные), он не перегружен лишними элементами и в некоторой степени кажется аскетичным.

Технические характеристики

«Тойота» выпустила машину с водородным двигателем, имеющим большой запас мощности. Силовая установка, по словам производителей, будет иметь 153 лошадиные силы, чего вполне достаточно как для автомобиля такого класса. О других двигателях японцы не говорят, и, скорее всего, на рынок выйдет только одна модификация новинки со 153-сильным экологически чистым агрегатом. Водородный двигатель («Тойота Мирай» 2015 года выпуска) работает на специальных топливных ячейках. Внутри последней происходит реакция, в которой принимают участие водород и кислород. В результате химического взаимодействия вырабатывается мощная энергия, которая питает электромотор.

Динамика и затраты эксплуатации

Производитель говорит, что по динамическим характеристикам Toyota с водородным двигателем ничем не отличается от своих бензиновых аналогов. Разгон с нуля до «сотни» оценивается в 9 секунд. При этом инженеры отмечают низкую себестоимость поездок.

Цена заправки бака за 1 километр составит всего 10 центов. Таким образом, чтобы проехать машине сотню километров, нужно потратить всего 10 долларов. А заправить авто можно всего за 5 минут.

Как работает двигатель на водороде?

Наверняка каждый из нас задумывался о принципе действия данного агрегата. Что же, давайте рассмотрим, как работает водородный двигатель на самом деле.

Основной движущей силой данных машин является электрохимический генератор (некий У японцев он называется FC Stack. Внутри электрохимического генератора происходит реакция, в результате которой происходит окисление водорода. Именно в этот период вырабатывается нужная энергия, которая потом перенаправляется в компактный аккумулятор. Последний выполняет функцию питания электродвигателя, который и приводит машину в действие. В каком виде вырабатывает отходы водородный двигатель? «Тойота Мирай» не зря называется экологически чистой машиной, так как из ее исходят вовсе не ядовитые газы, а обыкновенная вода.

Все это очень хорошо, однако есть сила, препятствующая развитию данного вида транспорта. Основная проблема заключается в том, что процессы изготовления топлива для водородных авто на данный момент недостаточно развиты и требуют больших денежных затрат. Тем более что при создании водорода задействуются такие компоненты, как уголь и метан. Они очень сильно загрязняют атмосферу, а потому смысла в использовании таких двигателей ради «сохранения окружающей среды» нет. Конечно, отходов от сгорания данного топлива нет (чистая вода), но чтобы его приготовить, нужно значительно испортить атмосферу грязными выбросами. Поэтому все больше специалистов ищут замену теперешним ДВС в солнечных батареях.

Кстати, водород не относится к какому-либо уникальному виду топлива, который может использоваться только на одном типе двигателей. Исследования показали, что этот продукт вполне реально применять и на классических моторах с внутренним сгоранием. Однако после такой реакции есть последствия. Дело в том, что водород при сгорании в ДВС выделяет лишь 1/3 от той энергии, которую он произвел бы на специализированном агрегате. Правда, инженерам удалось исправить этот недостаток. Благодаря измененной системе зажигания КПД таких двигателей не снижается, а, напротив, увеличивается почти в 1,5 раза от обычного, что делает эксплуатацию этого топлива более благоприятной и разумной с экологической и финансовой точки зрения.

Но все же неприятности были подмечены не только в области КПД. И если коэффициент полезного действия инженерам удалось увеличить методом усовершенствования системы зажигания, то с такими проблемами, как высокая температура горения в камере, прогар поршней и клапанов, они справиться не в силах. Кстати, при длительной работе водород способен вступать в реакцию с другими составляющими мотора, в том числе и со смазкой. А без нее двигатель очень быстро изнашивается. Кроме этого, водород в силу своей летучести может проникать в и там воспламеняться. Что касается роторных ДВС, они в силу простой конструкции и большого расстояния между коллекторами являются более благоприятными для использования подобного топлива в качестве основного. На этом вопрос, как работает водородный двигатель, можно считать закрытым.

О стоимости

По словам производителя, старт продаж автомобилей «Тойота Мирай» состоится весной 2015 года. Сначала новинка будет доступна только на внутреннем рынке, а уже летом она появится на европейском и американском рынках. Стартовая цена водородной «Тойоты» составляет 57,5 тысячи долларов. Кроме этого, компания предлагает приобрести данное авто в кредит с ежемесячной оплатой в 500 долларов США. Бонусом станет возможность бесплатной заправки автомобиля в течение года на АЗС Калифорнии.

Пока у японской «Тойоты» нет конкурентов среди водородных автомобилей. По крайнее мерее, так будет до 2016 года. Дело в том, что в марте 2016-го на рынок выходит новый водородный автомобиль Honda FCV. Но насколько популярным она будет, мы прогнозировать не станем, а пока дождемся старта продаж новой «Тойоты Мирай».

Заключение

Итак, мы выяснили, почему он такой особенный и как работает водородный двигатель. «Тойота» - один из первых автопроизводителей, который всерьез задумывается запустить в массовое производство свой «экологически чистый продукт». Правда, пока не будет решена проблема с заправочными станциями и более дешевым способом компанию вряд ли ждет большой успех в сфере продажи подобных машин.

Автопроизводители делают все возможное для того, чтобы предложить нам экологически чистые транспортные средства. В это время мировые запасы нефти сокращаются, и опасения по поводу последствий глобального потепления остаются актуальными. В результате этого начали появляться интересные технологии производства двигателей. Сначала это были гибридные автомобили с бензиновыми и электрическими моторами. Потом появились полностью электрические автомобили, такие как Nissan Leaf и Tesla Model S. А последней новинкой в этом направлении стали водородные автомобили.

Водород – это доступный и возобновляемый источник энергии. На сегодняшний день существует лишь два таких серийных автомобиля от известных компаний – Toyota Mirai и Hyundai ix35 Fuel Cell. Мы решили рассказать вам о 10 вещах, которые вы должны знать о машинах, работающих на водороде.

1. Мощность = вода

У Hyundai ix35 Fuel Cell нет традиционного двигателя под капотом. Его место занимает топливный элемент, как следует из названия кроссовера. Он получает кислород из воздуха снаружи автомобиля и водород из бака в автомобиле, в результате чего происходит химическая реакция, необходимая для получения электродов, питающих автомобиль. Единственный производственный отход – H2O, то есть, вода.

Интересует мощность? Проверьте! Нулевые выбросы? Да, это реальность!

2. Они бесшумны… почти

Сядьте в автомобиль на водороде, включите зажигание (простым нажатием кнопки в случае с Hyundai), и вы не услышите ничего. Как и в электрокарах, в таких машинах отсутствует звук работы двигателя. Ну, почти отсутствует.

Если выйти из автомобиля, находясь на сравнительно тихой улице, вы услышите минимальный гул топливного элемента, который выполняет свою работу. В условиях городского трафика этот звук вообще невозможно заметить. Во время движения вы будете слышать только привычный шум колес. Нажимая педаль акселератора, вы ничего не услышите, но зато почувствуете реальную мощность.

3. Едь, едь, едь

Все это может казаться слишком хорошим, чтобы быть правдой. Может возникать вопрос о том, чем придётся пожертвовать владельцам водородных авто. Некоторые люди думают, что мощность – слабое место таких машин. Но стоит лишь нажать педаль газа и результат вас явно не разочарует.

Hyundai ix35 Fuel Cell – это переднеприводный кроссовер, поэтому разрабатывался он явно не для установки скоростных рекордов. Но нажатие на педаль акселератора оставляет исключительно положительные впечатления – тело начинает приятно прижиматься к сиденью.

4. Здесь тоже есть аккумулятор

Сам автомобиль работает на газе, но и аккумуляторная батарея в нем установлена. Она необходима для запуска и начального ускорения, так как есть небольшая (меньше 1 секунды) задержка между нажатием на педаль и получением необходимой отдачи топливного элемента.

Подзарядка аккумулятора происходит с помощью кинетической энергии, вырабатываемой при торможении.

5.Нет тахометра, только мощность

В водородных машинах нет двигателя внутреннего сгорания и традиционной коробки передач. Здесь используется нечто похожее на автоматическую трансмиссию. Поэтому вместо привычного для всех нас тахометра на панели приборов установлена шкала мощности.

Да, мощность! Чем сильнее вы нажимаете на педаль акселератора, тем выше будет подниматься стрелка на шкале мощности. Выглядит немного глупо, но забавно! Просто смотрите на эту часть приборного щитка, нажимая на педаль, и наслаждайтесь.

6. Автономность

Одна из самых существенных проблем, с которой сталкиваются владельцы электрокаров, заключается в ограниченном пробеге на одном заряде аккумуляторов. В этом плане автомобили с традиционными ДВС более конкурентоспособны.

Но в случае с водородными автомобилями все не так плохо. Вам не придётся делать много остановок для дозаправки во время длительных поездок. Так, Toyota Mirai сможет проехать без дозаправки около 500 километров, а вот Hyundai утверждает, что ix35 Fuel Cell преодолеет на одном баке водорода до 594 км. А это очень и очень хороший показатель для экологически чистого автомобиля!

7. Заправка – быстро, но очень проблематично

Процесс дозаправки происходит как и в обычных автомобилях – надо открыть лючок топливного бака и вставить специальный «пистолет» для заправки бака водородом. Примечательно, что заполнить бак можно лишь за 3-5 минут (в зависимости от объема), а это гораздо быстрее, чем даже самая быстрая зарядка электрического автомобиля (примерно полчаса).

Это более удобно, но есть одна очень и очень большая проблема: найти заправку, где продается водород сегодня практически нереально. Например, даже в Великобритании работает лишь 4 общественные станции, предназначенные для заправки водородных транспортных средств.

По прогнозам, в Великобритании количество таких заправок до 2020 года увеличится до 65, но даже в столь развитой стране это будет очень маленькая сеть. На сегодняшний день в Великобритании работает свыше 8000 обычных АЗС. Ни о каком сравнении не может быть и речи. Чего уж говорить о России…

8. Информационно-развлекательная система

Может казаться, что машина на водороде не может быть очень мощной, но не волнуйтесь – мощности вполне достаточно и для быстрого разгона, и для проигрывания ваших любимых аудио- и видеоматериалов.

Как и в обычном автомобиле, в салоне водородных “железных коней” есть полноценный набор современной электроники. Климат-контроль, синхронизация со смартфоном по Bluetooth, навигация, парковочные датчики, круиз-контроль, камера заднего вида – всё это можно установить в такую машину.

9. Только четыре колеса

Четыре колеса – стандартная характеристика каждого автомобиля. Но о нише для запаски придётся забыть, ведь всё пространство «съел» топливный бак. Емкость для хранения водорода занимает много места, поэтому придётся или учиться пользоваться ремонтным комплектом или возить в багажном отделении запаску в чехле. Скорее всего, оптимальным решением станет покупка подходящей «докатки».

10. Это не дешево… пока

Как уже упоминалось ранее, сегодня на рынке есть только два серийных автомобиля на водороде – Toyota Mirai и Hyundai ix35 Fuel Cell. В Европе цена «корейца» составляет примерно 76 000 долларов, а вот за модель Toyota придётся выложить примерно 57 500 долларов.

Это совсем недешево, особенно учитывая столь ограниченное количество мест, где можно заправить такой автомобиль. Hyundai отмечает, что планирует выпустить более компактную модель с такой силовой установкой. Скорее всего, она будет отличаться более доступной ценой. Да и другие автомобильные производители серьезно взялись за изучение новой технологии.

А что вы думаете о водородных машинах? Есть ли у них будущее в мире и на российских дорогах в частности?

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп , а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

По этой причине автопроизводители постоянно работают над тем, чтобы получить «безвредный» для окружающей среды и относительно дешевый в производстве силовой агрегат, который при этом не будет нуждаться в дорогом топливе.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

Читайте в этой статье

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или , а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

Прежде всего, горение водорода по сравнению с нефтяным топливом отличается тем, что водород сгорает намного быстрее. В обычном двигателе смесь бензина или солярки с воздухом заполняет камеру сгорания тогда, когда поршень почти поднялся в ВМТ (верхняя мертвая точка), затем топливо какое-то время горит и уже после этого газы давят на поршень.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Однако чтобы этого добиться, на автомобиле должна стоять установка для электролиза (электролизер), которая и будет отделять водород от воды, чтобы затем получить нужную реакцию с кислородом в камере сгорания. На практике установка получается сложной и дорогой, а создать такую закрытую систему довольно сложно.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в , чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Также даже небольшая утечка водорода может стать причиной того, что топливо попадет на разогретый выпускной коллектор, после чего может произойти взрыв или пожар. Чтобы этого не случилось, для работы на водороде чаще задействуют роторные двигатели. Такой тип ДВС больше подходит для этой задачи, так как их конструкция предполагает увеличенное расстояние между впускным и выпускным коллектором.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Правда, никаких отдельных установок для получения водорода из воды на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода на полном баке водорода составляет около 300 км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной). Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода. В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду, при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания , другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Также не особенно большим является и сам выбор водородных легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Что касается недостатков и сложностей, машина с водородным двигателем сегодня имеет высокую стоимость, а также могут возникать проблемы с заправкой топливом по причине недостаточного количества заправочных станций. Не стоит забывать и о том, что также не просто найти специалистов, которые способны качественно и профессионально обслужить водородную силовую установку. При этом обслуживание будет достаточно затратным.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

Читайте также

Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы.

  • Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI.
  • К сожалению, природные ресурсы нашей планеты не являются безграничными. И хотя запасов нефти, являющейся сырьём для производства автомобильного топлива, хватит не на одну сотню лет, неуклонно растущая цена чёрного золота принуждает производителей уже сегодня подыскивать альтернативные источники питания.

    Кроме того, к этому приводит необходимость заботы о чистоте окружающей среды. Хотя в большинстве современных транспортных средствах изготовителями предусмотрена тщательная очистка выхлопных газов, полностью уберечь экологию от их негативного воздействия пока не удаётся

    Одним из наиболее перспективных вариантов альтернативных источников энергии для автомобилей считается инновационная разработка конструкторского бюро концерна Тойота. Существует ли возможность самостоятельно изготовить водородный двигатель? Попробуем разобраться, предварительно ознакомившись с устройством и принципом действия силового агрегата, предназначенного для машин грядущего поколения.

    Водородный двигатель - достойный преемник моторов на традиционном топливе. Рекомендации по самостоятельному изготовлению

    Мастерство отечественных умельцев всегда поражало и вызывало неприкрытую зависть автолюбителей всего мира. Стремление избежать лишних расходов принуждает доморощенных механиков совершенствовать личные средства передвижения своими руками. Водородный двигатель не является исключением. Российские автолюбители научились изготавливать его самостоятельно.

    Чтобы лучше разобраться во всех тонкостях этого процесса, предварительно следует ознакомиться с устройством силового агрегата, которому, несомненно, принадлежит будущее моторостроения. Также необходимо досконально изучить принцип работы подобного устройства.

    Разновидности водородных двигателей

    Современная наука не стоит на месте, постоянно находясь в поисках новых решений. Однако реального воплощения в жизнь удостаиваются только самые перспективные из них. Разработки, не обладающие достаточно высокой рентабельностью вкупе с приемлемыми показателями производительности, отметаются сразу. На сегодняшний день известно два вида силовых агрегатов, работающих на водороде:

    1. моторы, в качестве источника питания которых используются топливные элементы. Рядовому обывателю, к сожалению, установить подобный водородный двигатель на свой автомобиль не представляется возможным. Объяснением такой весьма печальной для водителей среднего достатка действительности является довольно ощутимая стоимость комплектующих деталей, составляющих его конструкцию. Некоторые из них изготавливаются из драгоценных материалов, в частности из платины;
    2. второй разновидностью считается водородный двигатель внутреннего сгорания. Его принцип действия аналогичен силовым установкам, работающим на пропане. Поэтому часто газовые агрегаты подвергают определённой перенастройке, приспосабливая к использованию водорода. Несмотря на то, что КПД таких моторов значительно ниже устройств, функционирующих на топливных элементах, многих автолюбителей привлекает их доступная стоимость и возможность самостоятельного изготовления.

    Следует отметить, что учёные не остановились на изобретении этих двух типов водородных двигателей. В настоящее время проводятся изыскания по их усовершенствованию. Поэтому невозможно с уверенностью утверждать, какому из них принадлежит будущее.

    Принцип действия водородных силовых установок

    Чтобы любой мотор мог нормально работать, необходимо его обеспечить надёжным источником питания. Водородный двигатель функционирует за счёт электролиза. С присутствием особого катализатора в воде под воздействием электрического тока образуется не обладающий взрывоопасными свойствами газ с названием гидроген. Его можно представить химической формулой ННО.

    В конструкции силового агрегата предусмотрены специальные ёмкости, Они предназначены для соединения гидрогена с топливно-воздушной смесью.

    Устройство генератора представлено электролизёром и резервуаром. Процесс образования гидрогена осуществляется при помощи модулятора тока. Водородные двигатели инжекторного типа дополнительно комплектуются особым оптимизатором. Основным предназначением данного приспособления является обеспечение требуемого соотношения гидрогена и топливно-воздушной смеси. С его помощью происходит регулирование процесса для создания идеальных пропорций.

    Разновидности катализаторов

    Рекомендации по созданию водородного двигателя своими руками

    В обычных условиях выделить гидроген из воды практически невозможно. Для успешного протекания процесса необходимо использование специальных катализаторов. На сегодняшний день применяются такие их разновидности:

    1. достаточно простая конструкция, управляемая весьма примитивным механизмом, выполняется в виде цилиндрических банок. К сожалению, элементарное устройство данного катализатора негативно отразилось на производительности водородного двигателя. Её максимальная величина характеризуется показателем 0,7 л газа, выделяемого за одну минуту. Такой вид катализатора подходит для ДВС на водороде с небольшой ёмкостью, а именно до 1,5 литров. Увеличение количества банок способствует возможности эксплуатации силового агрегата большего объёма;
    2. наилучшей эффективностью обладает катализатор, представленный обособленными ячейками. Такая система характеризуется максимальным коэффициентом полезного действия;
    3. на долгосрочную эксплуатацию рассчитаны открытые пластины или сухой катализатор. Благодаря свободному доступу воздуха из окружающей среды создаётся возможность наиболее эффективного охлаждения. Из перечисленных разновидностей система имеет средний показатель производительности, выражающийся величиной, колеблющейся в пределах 1-2 л газа, выделяемого из воды на протяжении одной минуты.

    Конструкторские бюро и исследовательские институты не прекращают изыскания по разработке водородных двигателей, обладающих приемлемой производительностью при максимальном КПД. Уже сегодня практикуется применение гибридных устройств, в которых успешно сочетаются различные источники питания. Оптимальной считается комбинация водорода с бензином. Также учёные продолжают поиски идеального катализатора, способного обеспечить наибольшую производительность.

    Формирование водородного агрегата

    Для начала надлежит обеспечить устройство трубопровода с добавочными ёмкостями Датчик уровня жидкости, закреплённый в центре крышки, препятствует ложному срабатыванию во время движения вверх-вниз. Этим прибором управляется система автоматической подпитки.

    Датчик давления регулирует подкачку воды, включая т отключая её при показателях соответственно 40 и 45 psi. При достижении нагрузки в 50 psi приводится в действие предохранитель, в конструкции которого предусмотрены две функционально значимые части:

    • вентиль аварийного сброса используется в экстремальных ситуациях;
    • разрывной диск, принцип работы которого заключается в активации при показателе давления в 60 psi, обеспечивая сохранность системы.

    Особое внимание следует уделить качественному отводу тепла. Для этой цели подбирается наиболее холодная свеча.

    Электрическая начинка

    В качестве импульсного генератора, регулирующего продолжительность и частоту импульса, рекомендуется использовать таймер 555. В микросхеме двигателя на водороде должно быть два таких прибора. При этом конденсаторы первого из них обязаны обладать большей ёмкостью Включение второго генератора происходит с выхода третьей частоты первого таймера.

    Резисторы на 220 и 820 Ом соединяются с третьим выходом второго прибора 555. Для получения силы тока требуемой величины используется транзистор. Его защита возложена на диод 1N4007, чем поддерживается нормальное функционирование всей системы.

    Заключение

    Вполне вероятно, в ближайшем будущем подавляющее большинство транспортных средств будет комплектоваться водородными двигателями. Поскольку кругооборот воды в природе сделал этот материал практически неистощимым, и процесс её добычи не вызывает никаких трудностей, экономия становится очевидной.

    Помимо того, главными преимуществами таких агрегатов считаются сокращение потребления бензина и сохранность окружающей среды благодаря абсолютной экологической безопасности.

    Несмотря на то, что характеристики самодельного мотора, использующего водородное топливо в качестве источника питания, несколько уступают заводским моделям, отечественные умельцы могут по праву гордиться собственноручным творением.