Получение водорода как топлива будущего. Водородное топливо Сообщение на тему водород топливо будущего

Популярность электромобилей в последнее время несколько задвинула на второй план авто на топливных элементах. Тем не менее водород готовится дать бой электричеству, и сегодня мы посмотрим на перспективы этого элемента в энергетическом будущем планеты. Водород — это самый простой и распространенный химический элемент во вселенной, на долю которого приходится 74% всей известной нам материи. Именно водород используется звездами, в том числе и Солнцем, для высвобождения огромного количества энергии в результате термоядерных реакций.

Несмотря на свою простоту и распространенность, на Земле водород в свободной форме не встречается. За счет своего легкого веса он либо поднимается в верхние слоя атмосферы, либо вступает в связь с другими химическими элементами, например с кислородом, образуя воду.

Интерес к водороду, как к альтернативному источнику энергии, в последние десятилетия вызван двумя факторами. Во-первых, загрязнением окружающей среды ископаемым топливом, являющимся основным источником энергии на данном этапе развития цивилизации. И, во-вторых, тем фактом что запасы ископаемого топлива ограничены и по оценкам экспертов будут истощены приблизительно через шестьдесят лет.

Водород, как впрочем и некоторые другие альтернативы, является решением вышеперечисленных проблем. Использование водорода приводит к нулевым загрязнениям, поскольку в результате выделения энергии побочными продуктами являются лишь тепло и вода, которые могут быть использованы повторно для других целей. Запасы водорода также очень сложно истощить, учитывая что он составляет 74% вещества во Вселенной, а на Земле входит в состав воды, которой покрыто две трети поверхности планеты.

Получение водорода

В отличие от ископаемых источников энергии (нефти, угля, природных газов), водород не является готовым к использованию источником энергии, а считается ее носителем. То есть взять водород в чистом виде как уголь и использовать для получения энергии невозможно, необходимо сначала потратить некоторую энергию для того чтобы получить чистый водород пригодный для использования в топливных элементах.

Поэтому водород нельзя сравнивать с ископаемыми источниками энергии и более коректна аналогия с батареями, которые предварительно необходимо зарядить. Правда батареи перестают работать после разряда, а водородные элементы могут производить энергию до тех пор пока будут снабжаться топливом (водородом).

Наиболее распространенным и недорогим методом получения водорода считается паровой риформинг, в котором используются углеводороды (вещества состоящие исключительно из углерода и водорода). Во время реакции воды и метана (CH4) при высоких температурах выделяется большое количество водорода. Недостатком метода является то, что побочным продуктом реакции является углекислый газ, поступающий в атмосферу точно так же как и при сжигании ископаемого топлива, что соответственно не снижает выбросы парниковых газов несмотря на использование альтернативного источника энергии..

Возможно и прямое применение некоторых природных газов непосредственно в водородных топливных элементах в качестве альтернативы. Это позволяет не затрачивать энергию на получение водорода из газа. Стоимость таких топливных элементов будет ниже, однако при работе на природном газе в атмосферу также будут попадать парниковые газы и другие токсические элементы, что не делает такие газы полноценной заменой водороду.

Получить водород можно и в процессе электролиза. При пропускании электрического тока через воду, происходит ее разделение на составляющие химические элементы в результате чего получают водород и кислород.

Помимо привычных способов сейчас тщательно исследуются альтернативные пути получения водорода. Например, при наличии солнечного освещения продуктом жизнедеятельности некоторых водорослей и бактерий также может быть водород. Некоторые из этих бактерий могут производить водород прямо из обычных бытовых отходов. Несмотря на относительно низкую эффективность этого метода, возможность перерабатывать отходы делает его достаточно перспективным, особенно с учетом того что эффективность процесса постоянно повышается в результате создания новых видов бактерий.

Совсем недавно на горизонте появился еще один перспективный способ получения водорода с применением аммиака (NH3). При разделении этого химического вещества на составляющие получается одна часть азота и три части водорода. Наилучшими катализаторами таких реакций являются дорогостоящие редкие металы. Новый способ вместо одного редкого катализатора использует два доступных и недорогих вещества, соду и амиды. При этом эффективность процесса сопоставима с наиболее результативными дорогими катализаторами.

Помимо низкой стоимости данный метод примечателен и тем что аммиак проще хранить и транспортировать по сравнению с водородом. А в необходимый момент водород можно получить из аммиака просто запустив химическую реакцию. По неподтвержденным пока прогнозам использование аммиака позволит создать реактор объемом не более 2-литровой бутылки, достаточный для производства водорода из аммиака в количествах достаточных для использования автомобилем обычных размеров.

Аммиак на данный момент транспортируется в огромных количествах и широко применяется в качестве удобрения. Именно это химическое вещество делает возможным выращивание практически половины еды на Земле, и возможно в будущем станет одним из важнейших источников энергии для человечества.

Сферы применения

Водородные топливные элементы могут применяться практически в любом виде транспорта, в стационарных источниках энергии для домов, а также в небольших портативных, иногда карманных устройствах, для генерирования электричества, используемого другими мобильными устройствами.

Еще в 70-х годах прошлого столетия водород начали применять в NASA для вывода ракет и космических шатлов на орбиту Земли. Водород используется и позже для получения электричества на шатлах, а также воды и тепла в качестве побочных продуктов реакции.

На текущий момент наибольшие усилия направлены на продвижение водорода как топлива в автомобильной индустрии.

Сравнение водородных и электрических автомобилей

Водород на обывательском уровне по-прежнему принято считать опасным химическим элементом. Эта репутация закрепилась за ним после крушения дирижабля Гинденбург в 1937. Тем не менее Администрация по энергетической информации США (EIA) утверждает что в аспектах использования водорода касающихся нежелательных взрывов, этот элемент как минимум так же безопасен как и бензин.

На текущий момент очевидно, что если не произойдет очередной технологической революции, то машины ближайшего будущего будут преимущественно либо электрическими, либо водородными, либо гибридными формами этих двух технологий и бензиновых авто.

У каждого из вариантов развития автоиндустрии есть свои преимущества и недостатки. Заправочные станции под водородное топливо гораздо проще сделать на базе текущих бензиновых заправок, чего не можно сказать об инфраструктуре для электического «заряда» транспортных средств.

В определенном смысле разделение на водородные и электрические автомобили является искусственным, поскольку в обоих случаях машина использует электричество для движения. Только в электрокарах оно запасено в более привычной для нас форме непосредственно в аккумуляторах, а в топливных элементах вещество, которое в результате реакции будет переводить химическую энергию в электрическую, можно добавить в любой момент.

Заправка водородом по времени сравнима с заправкой бензином, и занимает несколько минут, а вот полный заряд электрических аккумуляторов на текущий момент в лучшем случае производится за 20-40 минут. С другой стороны электромобили обладают тем преимуществом что их можно подключать к розетке непосредственно дома, и если делать это ночью то можно экономить на электро-тарифах.

Экологичность

Поскольку ни электричество, ни водород не являются природными источниками энергии, в отличие от ископаемого топлива, то на их получение необходимо затратить энергию. Источник этой энергии и становится решающим фактором в экологичности как водородных, так и электрических автомобилях.

Для получения водорода требуется либо тепло, либо электрический ток, которые в жарких и солнечных регионах планеты могут быть получены сбором солнечной энергии. В холодных странах, например Скандинавии, уже сейчас упор делается на более подходящем для этого климата источнике зеленой энергии, на ветряных станциях, которые с таким же успехом могут принимать участие в производстве водорода с помощью электролиза. Примечательно что водород в таком случае может использоваться и для хранения неиспользуемой энергии, например при выработке ночью.

Учитывая обязательную стадию получения водорода и электричества, нулевой уровень выбросов таких автомобилей зависит от того каким способом была получена первичная энергия. Именно поэтому между обоими типами транспортных средств соблюдается паритет и ни один нельзя причислить к более экологическому средству передвижения.

Ничью можно констатировать и сравнив шумность этих видов транспорта. В отличие от традиционных, новые двигатели работают гораздо тише.

По этому поводу можно вспомнить известный закон красного флага регулирующий появление первых автомобилей в 19 веке. Согласно самым жестким формам этого закона транспортное средство без лошадей не могло перемещаться в черте города со скоростью превышающей 3.2 км/ч. При этом предвосхищяя движение автомобиля за несколько минут до его появления по дороге должен был идти человек с красным флагом, предупреждающий о появлении транспорта.

Закон красного флага был принят в связи с тем что новые транспортные средства перемещались относительно бесшумно по сравнению с каретами и могли стать причиной аварий и травм, по крайней мере по мнению судей того времени. Проблема, хоть и была преувеличена, но все же спустя полтора века мы можем стать свидетелями новых подобных законов в связи с бесшумностью новых типов двигателей. Электрокары и авто на топливных элементах вряд ли работают громче первых транспортных средств, а вот скорость их перемещения в городской черте сейчас явно выше 3 км, что делает их потенциально опасными для пешеходов. В той же Формула 1 сейчас задумываются об усилении звука моторов с помощью искусственной озвучки. Но если в автогонках это делается для повышения зрелищности, то в новых автомобилях появление искусственного источника шума может стать требованием безопасности.

Отрицательные температуры

Автомобили на топливных элементах, как и обычные бензиновые авто, испытывают определенные проблемы на морозе. Внутри самых батарей может содержаться небольшое количество воды, замерзающее при отрицательных температурах и приводящее батареи в неработоспособное состояние. После прогрева батареи будут работать нормально, однако вначале без внешнего обогрева, они либо не заводятся, либо работают некоторое время на пониженной мощности.

Дальность перемещения

Дистанция перемещения современных водородных авто составляет приблизительно 500 км, что заметно больше чем в типичных электрокарах, которые нередко могут перемещаться лишь на 150-200 км. Ситуация изменилась после появления Tesla Model S, однако даже этот электрокар способен перемещаться без дозарядки на расстояние не более 430 км.

Такие цифры достаточно неожиданны если учесть КПД соответствующих типов двигателей. Для обычных бензиновых двигателей внутреннего сгорания КПД составляет приблизительно 15%. КПД авто на топливных элементах — 50%. КПД электромобилей — 80%. На данный момент концерн General Electrics работает над топливными элементами с 65% эффективностью и утверждает что их КПД может быть повышен до 95%, что позволят запасать до 10 МВт электрической энергии (после преобразования) в одном элементе.

Вес батарей и топлива

Однако слабым местом электрокаров являются сами батареи. Например в Tesla Model S она весит 550 кг, а полный вес авто составляет 2100 кг, что на пару сотен килограм больше веса аналогичного водородного транспортного средства. Вес этой батареи к тому же не уменьшается по мере преодоления дистанции, в то время как выработанное топливо в бензиновых и водородных автомобилях постепенно делает машину легче.

Выигрывают водородные элементы и в плане хранения энергии в пересчете на единицу массы. В плане плотности энергии на единицу объема водород не так хорош. При обычных условиях этот газ содержит лишь треть энергии метана в одинаковом объеме. Естественно водород хранится при транспортировке и внутри топливных батарей в жидком или сжатом виде. Но даже в этом случае количество энергии (Мегаджоулей) в одном литре проигрывает показателям бензина.

Сильные стороны водорода проявляются при пересчете энергии на единицу веса. В этом случае он уже в три раза превосходит бензин (143 МДж/кг против 47 МДж/кг). Выигрывает водород по этому показателю и у электрических батарей. При одинаковом весе водород имеет вдвое больший запас энергии чем электрическая батарея.

Хранение и транспортировка

Определенные сложности возникают и при хранении водорода. Наиболее эффективная форма для транспортировки и хранения этого химического элемента — жидкое состояние. Однако добиться перехода газа в жидкую форму можно лишь при температуре в -253 градуса Цельсия, что требует специальных контейнеров, оборудования и немалых финансовых затрат.

2015 год

Toyota, Hyundai, Honda и другие производители авто в течение многих лет вкладывали большие средства в исследование водородных топливных элементов и в 2015 году собираются представить первые автомобили стоимость и характеристики которых позволят рассматривать их как альтернативу другим видам транспорта. Машина на топливных элементах в 2015 году должна быть среднеразмерным 4-дверным седаном с возможностью преодоления как минимум 500 км без дозаправок, которые будут длиться не более пяти минут. Стоимость такого авто должна находиться в диапазоне от $50 тыс до $100 тыс. Таким образом стоимость водородных авто снизилась на порядок в течение одного десятилетия.

Как должно быть очевидно из списка автопроизводителей, Япония станет одним из центров развития водородных автомобилей. Интересно что одним из главных рынков для этих авто станет территория отделенная от Японии гораздо большими расстояними чем близлежащий азиатский рынок.

Калифорния уже давно имеет репутацию одного из самых прогрессивных мест на планете Земля. Именно здесь законодательство часто дает зеленый свет новейшим технологиям и изобретениям. Не стало исключением и продвижение автомобилей на альтернативном топливе.

Согласно принятому закону о транспортных средствах с нулевым выбросом (ZEV — zero-emission vehicle) к 2025 15% от всех проданных автомобилей не должны производить вредных выбросов в атмосферу. Совместно с десятью другими штатами, принявшими аналогичные законы, к 2025 году на дорогах США должно находиться около 3.3 млн ZEV.

Несмотря на то что подготовка к запуску новых автомобилей идет полным ходом, на первых этапах производителям придется столкнуться с серьезными инфраструктурными проблемами. Toyota выделила $200 млн на постройку водородных заправочных станций на территории Калифорнии, однако этих средств будет достаточно для создания лишь двадцати заправочных точек в следующем году. Даже без учета большой стоимости постройки, количество заправок будет увеличиваться достаточно скромными темпами. В 2016 году их число составит 40 штук, а в 2024 — 100 штук.

Такие размеренные сроки постройки можно легко объяснить тем что провести даже небольшую технологическую революцию за один год практически невозможно. 2015 год обозначен в календаре как год начала развития водородной автоиндустрии, однако настоящую конкуренцию машины на топливных элементах смогут составить своим конкурентам скорее всего лишь с появлением второго поколения более недорогих и надежных моделей, которые ожидаются к 2020 году, и появятся на дорогах с уже более-менее развитой сетью дозаправочных станций.

Несмотря на обилие японских имен среди производителей водородных авто, интересуются этим видом транспорта на других континентах. Среди известных производителей водородные планы есть у: General Electrics, Diamler, General Motors, Mercedes-Benz, Nissan, Volkswagen.

Итоги

Как это часто бывает, мир не делится на белое и черное, и водород не станет единственным источником энергии в будущем. Этот элемент совместно с другими альтеранитвными источниками энергии станет частью решения проблемы загрязнения окружающей среды и исчезновения природных ископаемых ресурсов. Перспектива данного вида топлива и водородных автомобилей начнет проясняться в 2015 году с появлением первых массовых авто на дорогах. Насколько они смогут конкурировать с электромобилями мы скорее всего узнаем в 2020 году по мере дальнейшего развития технологий и появления второго поколения топливных авто.

Снижение объема углеводородов и ухудшение состояния окружающей среды.

Крупнейшие мегаполисы мира встречают вас серым видом: застывший над городом тяжелый смог, образованный выхлопными газами.

Наряду с задымлением, в воздух выделяется углекислый газ, изменяющий наш климат на Земле.

Также многие государства задумываются об энергетической независимости.

Не волнуйтесь, автомобиль не исчезнет. Как раз когда вы читаете, сегодняшние ученые исследуют топливо будущего. На чем будут работать двигатели завтрашних автомобилей? Рассмотрим трех самых многообещающих кандидатов.

Водород – топливо космической эры

  1. более энергоемкий, чем бензин или аккумулятор для электромобиля;
  2. в качестве выхлопа вода;
  3. быстро заправляется.
  1. очень дорогой в производстве;
  2. трудность в хранении и транспортировке;
  3. несовместимость с сегодняшней инфраструктурой.

Итог:

На бумаге водород – весьма многообещающее горючее, но высокая стоимость и проблемы с хранением не дают возможности его широкого использования в ближайшем будущем.

Когда ученым понадобилось топливо для космической отрасли, они обратили внимание на водород. Водородные топливные элементы использовались, чтобы привести в действие электронику в командных модулях, включая миссию 1969 года, в которой люди впервые высадились на Луну.

Энергоблоки хоть и выглядят необычно, тем не менее очень похожи на батареи. Они также производят электричество, что дает основание считать автомобиль, работающий на подобном элементе, электромобилем. Для выработки электроэнергии в топливных элементах взаимодействуют два химических вещества.

Могут использоваться и другие, включая метанол и этанол. Но, как правило, применяется водород, поскольку у него высокая энергоемкость на единицу веса, а побочным продуктом является вода. Поэтому, если у вас водородный автомобиль, можно пить его выхлоп.

Топливные элементы почти не ограничены размерами и могут применяться в различных транспортных средствах.

Но не все так радужно. К сожалению, у водородных топливных элементов есть серьезные недостатки.

Во-первых, энергия в них не хранится.

Во-вторых, нет больших естественных источников чистого водорода на Земле, в отличие от ископаемого топлива. Это означает, что он должен производиться с нуля. Также водород – очень энергоемкое вещество. Это преимущество становится и недостатком, так как требует больших затрат энергии для производства.

Несмотря на некоторые многообещающие новые технологии, сегодня в почти каждом мыслимом промышленном сценарии стоимость водорода превышает цену бензина.

Кроме всего, водород – газ. Для использования он должен находиться в сжатом состоянии при высоком давлении, что затрудняет хранение и транспортировку. Например, для сохранности 5 кг водорода нужен крупный 171 литровый бак, удерживающий газ при давлении в 340 раз превышающим атмосферное.

Заправка транспорта сжатым газом требует дорогой инфраструктуры. Водородная заправочная станция стоит приблизительно 2 миллиона долларов США. Добавьте затраты на транспортировку и производство водорода. Все это потребует значительных долгосрочных инвестиций.

Тем не менее многие автопроизводители создали прототипы автомобилей на водородных топливных элементах, включая Фиат, Фольксваген и BMW. А Пежо-Ситроен даже произвел работающий на водороде квадроцикл.

Батареи – высокое напряжение в реальности

  1. отсутствие выхлопа;
  2. практически бесшумная работа;
  3. для зарядки используется электросеть;
  4. батареи уже запущены в массовое производство.
  1. большие габариты;
  2. тяжелые;
  3. долгое время зарядки;
  4. большая часть электричества многих стран производится работающими на угле ТЭС.

Итог:

Электромобиль – давняя мечта изобретателя. С правильным правительством и промышленной поддержкой он давно стал бы массовым. Есть много теорий заговора о том, что погубило «чистый» автомобиль. Но любая история об электромобилях должна начинаться с обсуждения энергоносителей.

После 20 летнего технологического пути сегодня золотым ребенком является литий-ионный аккумулятор. Он существенно легче, держит больше энергии и более эффективен, чем предшествующие ему батареи. Они используются во всей бытовой электронике.

Все же сегодняшние самые лучшие батареи вырабатывают существенно меньше энергии, чем водород или бензин. Средний запас хода электромобиля составляет 60 км. Поэтому технологии чистой энергии являются дополнением к традиционным.

Хотя возможности электромобилей постоянно расширяются. Например, Мини-E проезжает 240 км на одной зарядке. Но Мини-E – крошечный автомобиль с крупной батареей весом более 300 кг, из-за которой проектировщикам пришлось пожертвовать задними сиденьями.

Помимо ужасного модельного ряда, есть и другой недостаток. Аккумуляторы очень не спешат заряжаться.

Однако, чтобы справиться с различными проблемами внедряются технологические инновации. Израильская компания пошла по необычному пути: создание пунктов замены отработанных аккумуляторных батарей.

Другие решения включают внедрение мощных станций, где время заряда может быть снижено до тридцати минут. Также существует возможность зарядить специальные батареи всего за 10 секунд, используя очень высокое напряжение. Но если что-то пойдет не так, существует опасность получить серьезный вред здоровью.

В совокупности, вышеперечисленные технические проблемы убили первый электромобиль массового производства – EV-1 GM.

Все же прогресс не стоит на месте. Многие компании мира исследуют новые типы элементов для создания более энергоемких и простых в обслуживании аккумуляторных батарей. И недолог тот час, когда мы перестанем дышать городским смогом.

Биотопливо – мать-природа к спасению

  1. отсутствует необходимость в новой инфраструктуре;
  2. возобновляется;
  3. представляет собой нейтральный углерод;
  4. производится и применяется.
  1. может нанести вред более старым автомобилям;
  2. конкуренция с производством продуктов питания;
  3. нужно большое количество биомассы для удовлетворения мировой потребности.

Итог:

Сегодня биотопливо уже используется. С дальнейшим развитием технологий и увеличением производства его применение будет только расти. Несмотря на все перспективы, воздействие на окружающую среду – предмет интенсивного обсуждения.

Биотопливо – любое топливо, полученное из биологических материалов, например, таких как щепа, сахарное или растительное масло. Биогорючее от традиционного отличается двумя важными свойствами.

При добыче и сжигании ископаемых энергоресурсов дополнительно выделяется углекислый газ и накапливается в атмосфере. А биотопливо изготовлено из сельскохозяйственных культур, использующих двуокись углерода из окружающей среды для фотосинтеза. Поэтому при использовании биотоплива новый углекислый газ не выделяется (нейтральный углерод), что не ведет к климатическим изменениям.

Кроме всего, для биогорючего сырье выращивается.

Но несколько экологических «грязных пятен» портят радужную картину.

Для превращения биологического материала в биотопливо необходим производственный процесс, требующий затраты энергии. И, если она не из возобновляемого источника, производство вызывает загрязнение.

Вторая проблема состоит в том, что замена ископаемого топлива в мире на биотопливо требует огромного количества новой биомассы. Это может значительно сократить мировые продовольственные запасы. Этанол традиционно производится из зерна. Есть непродовольственные источники, например, пальмовое масло. Но они часто влекут за собой уничтожение девственных лесов.

Хорошие новости в том, что существует широкий выбор биологического материала для создания разных видов биогорючего. Метан, топливные добавки в виде этанола, более тяжелое дизельное топливо.

Направление получает значительную сумму правительственных субсидий, так как биотопливо совместимо с существующими двигателями внутреннего сгорания. Поэтому не требуется никакой новой инфраструктуры и автомобилей.

Производители сосредоточили усилия на создании этанола из целлюлозы, несъедобных частей растений. В этом два преимущества. Во-первых, отсутствует конкуренция с производством продуктов питания. Во-вторых, целлюлоза – самый богатый биологический материал на Земле.

Во многих странах используют биодобавки. Например, в Австралии этанол объединен с бензином в 10 процентную смесь, известную как E10. Почти все автомобили, сделанные после 1986 года, могут на ней безопасно ездить. Биодизель – другая топливная смесь (B10).

Какое будет топливо будущего?

Когда запасы ископаемых энергоресурсов сократятся до критических объемов, победит самая дешевая и быстрая в реализации альтернатива.

Поэтому биотопливо в настоящее время возглавляет гонку. Оно уже в продаже, широко используется и понижается в цене за счет роста производства. Электромобили едут вторыми с небольшим отрывом. Водородные автомобили без инфраструктуры плетутся на последнем месте.

Хотя внезапный технологический прорыв, такой как дешевый способ сохранять большое количество водорода, может изменить игру.

Известно, что в 30-е годы прошлого столетия в Советском Союзе в МВТУ им Н.Э Баумана Сороко-Новицкий В. И., (зав. кафедрой «Легкие двигатели» до 1937 г.) совместно с А. К. Курениным исследовал влияние добавок водорода к бензину на двигателе ЗИС-5. Известны также работы по использованию в качестве топлива водорода , которые проводильсь в нашей стране Ф. Б. Перельманом. Однако практическое применение водорода в качестве моторного топлива началось в 1941 году. В Великую Отечественную войну в блокадном Ленинграде техник-лейтенант Шелищ Б. И. предложил использовать водород , «отработавший» в аэростатах, как моторное топливо для двигателей автомобиля ГАЗ-АА.

Рисунок 1. Пост ПВО Лениградского фронта ВОВ, оборудованный водороднгой установкой

На рис. 1 на заднем плане виден спущенный на землю водородный аэростат, из которого водород перекачивается в газгольдер, расположенный на переднем плане. Из газгольдера с «отработашим» водородом газообразное топливо посредством гибкого шланга подается в двигатель внутреннего сгорания автомобиля ГАЗ-АА. Заградительные аэростаты поднимались на высоту до пяти километров и являлись надежным противовоздушным средством обороны города, не позволяя самолетам противника осуществлять прицельное бомбометание. Для опускания аэростатов, частично потерявших свою подъемную силу требовалось большое усилие. Эта операция осуществлялась с использованием механической лебедки, установленной на автомобиль ГАЗ-АА. ДВС вращал лебедку для опускания аэростатов. В условиях острого дефицита бензина были переоборудованы для работы на водороде несколько сотен постов ПВО, на которых использовались автомобили ГАЗ-АА, работающие на водороде.

После воины в семидесятые годы прошлого века Бриса Исааковича неоднократно приглашали на различные научные конферкнции, где в своих выступлениях он подробно рассказывал о тех далеких героических днях. Одно из таких мероприятий — I Всесоюзная школа молодых ученых и специалистов по проблемам водородной энергетики и технологии, организованная по инициативе ЦК ВЛКСМ, Комиссии АН СССР по водородной энергетике, Институтом атомной энергии им И. В. Курчатова и Донецким политехническим институтом, проводилась в сентябре 1979 года за полгода до его смерти. Борис Иссакович свой доклад «Водород вместо бензина» на секции «Технология использования Водорода» сделал 9 сентября.

В семидесятые годы в нескольких научно-исследовательских организациях СССР интенсивно проводились работы по использованию водорода в качестве топлива. Наиболее известны такие организации как Центральный научно-исследовательский автомобильный и автомоторный институт (НАМИ), Институт проблем машиностроения АН УССР (ИПМАШ АН УССР), Сектор механики неоднородных сред АН СССР (СМНС АН СССР), Завод-ВТУЗ при ЗИЛе и др. В частности, в НАМИ под руководством Шатрова Е. В. начиная с 1976 года были проведены научно-исследовательские и опытно-конструкторские работы по созданию водородного микроавтобуса РАФ 22034. Была разработана система питания двигателя позволяющая работать на водороде. Она прошла полный комплекс стендовых и лабораторно-дорожных испытаний.

Рисунок 2. Слева направо Шатров Е. В., Кузнецов В. М., Раменский А. Ю.

На рис. 2 фотографии слева на право: Шатров Е.В - научный руководитель проекта; Кузнецов В. М. - руководителя группы водородных двигателей; Раменский А. Ю. — аспирант НАМИ, внесшие значительный клад в организацию и проведение НИОКР по созданию водородного автомобиля. Фотографии стендов для испытания двигателя, работающего на водороде и микроавтобуса РАФ 22034, работающего на водороде и бензоводородных топливных композициях (БВТК), представлены на рис. 3 и 4.

Рисунок 3. Моторный отсек Болкса № 20 для испытаний ДВС на водороде Отдела мотрорных лабораторий НАМИ

Рисунок 4. Водородный микроавтобус РАФ (НАМИ)

Первый опытный образец микроавтобуса был построен в НАМИ в период 1976-1979 году (рис. 4). Начиная с 1979 года в НАМИ осуществлялись его лабораторно-дорожные испытания и опытная эксплуатация.

Параллельно работы по созданию автомобилей работающих на водорода велись в ИПМАШ АН УССР и СМНС АН СССР и Заводе Втузе при ЗИЛе. Благодаря активной позиции академика Струминского В. В. (рис. 5), руководителя СМНС АН СССР несколько образцов микроавтобусов использовались на ХХII Олимпийских летних играх в Москве в 1980 году.

Рисунок 5. Слева направво Легасов В. А., Семененко К. Н. Струминский В. В.

Как головной институт Министерства автомобильной промышленности СССР НАМИ сотрудничал с указанными выше организациями. Примером такого сотрудничества были совместные исследования с ИПМаш АН УССР, директором которого в те времена работал член-корреспондент АН УССР Подгорный А. Н. В области применения водорода на автомобиле следует обратить внимание на работы руководителей ведущих подразделений института: Варшавского И. Л., Мищенко А. И., Соловья В. В. и многих других (Рис. 6).

Рисунок 6. Сотрудники ИПМАШ АН УССР, слева направо Подгорный А. Н., Варшавский И. Л., Мищенко А. И.

Широко известны разработки этого института по созданию автомобилей и автопогрузчиков, работающих на БВТК с металлогидридными системами хранения водорода на борту.

Другим примером сотрудничества НАМИ с ведущими НИИ страны была работа по созданию металлогидридных систем хранения водорода на автомобиле. В рамках консорциума по созданию металлогидридных систем хранения сотрудничали три ведущие организации: ИАЭ им И. В. Курчатова, НАМИ и МГУ им М. В. Ломоносова. Инициатива создания такого консорциума принадлежала академику Легасову В. А. Институт атомной энергии им И. В. Курчатова был головным разработчиком металлогидридной системы хранения водорода на борту автомобиля. Руководителем проекта был Чернилин Ю. Ф., активными участниками работ были Удовенко А. Н. и Столяревский А. Я.

Металлогидридные соединения разработал и изготовил в необходимом количестве МГУ им. М. В. Ломоносова. Эта работа велась под руководством Семененко К. Н., заведующего кафедрой химии и физики высоких давлений. 21 ноября 1979 года были зарегистрированы в Государственном реестре изобретений СССР заявки № № 263140 и 263141 с приоритетом изобретения 22 июня 1978 года. Авторские свидетельства на сплавы-аккумуляторы водорода А. С. № 722018 и № 722021 от 21 ноября 1979 г. были одними из первых изобретений в этой области в СССР и в мире.

В изобретениях предлагались новые составы, позволяющие существенно увеличить количество запасаемого водорода. Это достигалось путем модификации состава и количества компонентов в сплавах на основе титана или ванадия.Такие композиции позволили добиться концентрации от 2.5 до 4.0 массовых процентов водорода. Выделение водорода из интерметаллида осуществлялось в интервале температур 250-400°С. Этот результат и по сей день является практически максимальным достижением для сплавов такого типа. В разработке сплавов принимали участие ученые ведущих научных организаций СССР, связанных с разработкой материалов и устройств на базе гидридов интерметаллических сплавов — МГУ им. М. В. Ломоносова (Семененко К. Н., Вербецкий В. Н., Митрохин С. В., Зонтов В. С.); НАМИ (Шатров Е. В., Раменский А. Ю.); ИМаш АН СССР (Варшавский И. Л.); Завода-ВТУЗа при ЗИЛ (Гусаров В. В., Кабалкин В. Н.). В середине восьмидесятых годов испытания металлогидридной системы хранения водорода на борту микроавтобуса РАФ 22034, работающего на БВТК, проводились в Отделе двигателей на газовых и других видах альтернативных топлив НАМИ (зав. отделом Раменский А. Ю.) . Активное участие в работе принимали сотрудники отдела: Кузнецов В. М., Голубченко Н. И., Иванов А. И., Козлов Ю. А. Фотография металлогидридной системы хранения водорода для микроавтобуса представлена на рис. 7.

Рисунок 7. Водородный автомобильныйметаллогидридный аккумулятор водорода (1983 г.)

В начале восьмидесятых годов начало зарождаться новое направление в применении водорода в качестве топлива для автомобилей, которое в настоящее время рассматривается как основная тенденция. Это направление связано с созданием автомобилей работающих на топливных элементах. Создание такого автомобиля осуществлялось в НПП «Квант». Под руководством Н. С. Лидоренко. Автомобиль впервые был представлен на международной выставке «Электро-82» в 1982 г. в Москве (рис. 8).

Рисунок 8. Водородный микроавтобус РАФ на топливных элементад (НПП «КВАНТ»)

В 1982 микроавтобус РАФ, на борту которого были смонтированы электрохимические генераторы и был установлен электрический привод, демонстрировался заместителю министра автомобильной промышленности Е. А. Башинджагяну. Демонстрировал автомобиль сам Н. С. Лидоренко. Для опытного образца, автомобиль на топливных элементах, имел неплохие ездовые качества, о чем не без удовлетворения отметили все участники просмотра. Планировалось осуществлять эту работу совместно с предриятиями Минавтопрома СССР. Однако в 1984 году Н. С. Лидоренко оставил пост руководителя предприятия, может быть с этим связано то обстоятельство, что эта работа не получила своего продолжения. Создание первого российского водородного автомобиля на топливных элементах, построенного коллективом предприятия более 25 лет могла бы претендовать на историческое событие в нашей стране.

Особенности ДВС при работе на водороде

По отношению к бензину водород имеет в 3 раза большую теплотворную способность, в 13-14 раз меньшую энергию воспламенения, и, что существенно для ДВС, более широкие пределы воспламенения топливно-воздушной смеси. Такие свойства водорода делают его чрезвычайно эффективным для применения в ДВС, даже в качестве добавки. В то же время к недостаткам водорода как топлива можно отнести: падение мощности ДВС по сравнению с бензиновым аналогом; «жесткий» процесс сгорания водородовоздушных смесей в области стехиометрического состава, что приводит к детонации на режимах высоких нагрузок. Эта особенность водородного топлива требует изменений конструкции ДВС. Для существующих двигателей необходимо применять водород в композиции с углеводородными топливами, например с бензином. или природным газом.

Например, организацию топливоподачи бензоводородных топливных композиций (БВТК) для существующих автомобилей необходимо осуществлять таким образом, чтобы на режимах холостого хода и частичных нагрузок двигатель работал на топливных композициях с высоким содержанием водорода. По мере возрастания нагрузок концентрация водорода должна снижаться и на режиме полного дросселя подачу водорода необходимо прекратить. Это позволит сохранить мощностные характеристики двигателя на прежнем уровне. На рис. 9 представлены графики изменения экономических и токсических характеристик двигателя с рабочим объемом 2,45 л. и степенью сжатия 8,2 ед. от состава бензоводородовоздушной смеси и концентрации водорода в БВТК.

Рисунок 9. Экономические и токсические характеристики ДВС на водороде и БВТК

Регулировочные характеристики двигателя по составу смеси при постоянной мощности Ne=6,2 квт и частоте вращения коленчатого вала n=2400 об/мин дают возможность представить, как меняются показатели двигателя при работе на водороде, БВТК и бензине.

Мощностные и скоростные показатели двигателя для испытаний выбраны таким образом, чтобы они наиболее полно отражали условия эксплуатации автомобиля в городских условиях. Мощность двигателя Ne=6,2 квт и частота вращения коленчатого вала n=2400 об/мин соответствует движению автомобиля, например «ГАЗЕЛЬ» с постоянной скоростью 50-60 км/час по горизонтальной, ровной дороге. Как видно из графиков, по мере увеличения концентрации водорода в БВТК эффективный КПД двигателя возрастает. Максимальное значение КПД при мощности 6,2 квт и частоте вращения коленчатого вала 2400 об/мин достигает на водороде 18,5 процентов. Это в 1,32 раза выше, чем при работе двигателя на этой же нагрузке на бензине. Максимальное значение эффективного КПД двигателя на бензине составляет на этой нагрузке 14 процентов. При этом состав смеси соответствующий максимальному КПД двигателя (эффективный предел обеднения) смещается в сторону бедных смесей. Так при работе на бензине эффективный предел обеднения топливно-воздушной смеси соответствовал коэффициенту избытка воздуха (а) равному 1,1 единицы. При работе на водороде коэффициент избытка воздуха соответствующий эффективному пределу обеднения топливно-воздушной смеси а=2,5. Не менее важным показателем работы автомобильного двигателя внутреннего сгорания на частичных нагрузках является токсичность отработавших газов (ОГ). Исследование регулировочных характеристик двигателя по составу смеси на БВТК с различными концентрациями водорода показали, что по мере обеднения смеси концентрация окиси углерода (СО) в отработавших газах снижалась практически до нуля не зависимо от вида топлива. Увеличение концентрации водорода в БВТК приводит к снижению выброса с отработавшими газами углеводородов СnHm. При работе на водороде концентрация этого компонента на отдельных режимах падала до нуля. При работе на этом виде топлива выброс углеводородов во многом определялся интенсивностью сгорания в камере сгорания ДВС. Образование окислов азота NxOy, как известно, не связано родом топлива. Их концентрация в ОГ определяется температурным режимом горения топливно-воздушной смеси. Возможность работы двигателя на водороде и БВТК в диапазоне бедных составов смесей позволяет снизить максимальную температуру цикла в камере сгорания ДВС. Это существенно уменьшает концентрацию окислов азота. При обеднении топливно-воздушной смеси свыше а=2, концентрация NxOy снижается до нуля. В 2005 году НАВЭ разработан микроавтобус ГАЗЕЛЬ, работающий на БВТК. В декабре 2005 года он был представлен на одном из мероприятий, проводимых в Президиуме Российской академии наук. Презентация микроавтобуса была приурочена к 60 летию президента НАВЭ П. Б. Шелища. Фотография бензоводородного микроавтобуса представлена на Рис.10.

Рисунок 10. Водородный микроавтобус «Газель»(2005 г.)

Для оценки надежности бензоводородной аппаратуры и пропаганды перспектив водородной экономики, прежде всего в сфере автомобильного транспорта, НАВЭ провела с 20 по 25 августа 2006 года автопробег водородных автомобилей. Пробег осуществлялся по по маршруту Москва - Н.Новгород - Казань - Нижнекамск - Чебоксары - Москва протяженностью 2300 км. Автопробег был приурочен к Первому всемирному конгрессу «Альтернативная энергетика и экология». В пробеге принимали участие два водородных автомобиля. Второй грузовой многотопливного автомобиля ГАЗ 3302, работал на водороде, сжатом природном газе, БВТК и бензине. Автомобиль был оснащен 4 облегченными стеклопластиковыми баллонами с рабочим давлением 20 мпа. Масса бортовой системы хранения водорода составляет 350 кг. Запас хода автомобиля на БВТК составлял 300 км.

При поддержке Федерального агентства по науке и инновациям НАВЭ при активном участии Московского энергетического института МЭИ (ТУ), Автокомбината № 41, Инженерно-технического центра «Водородные технологии и ООО «Славгаз» был создан опытный образец автомобиля ГАЗ 330232 «ГАЗЕЛЬ-ФЕРМЕР» грузоподъемностью 1,5 тонны, работающий на БВТК с электронной системой подачи водорода и бензина. Автомобиль оснащен трехкомпонентным нейтрализатором ОГ. На рис. 11 представлены фотографии автомобиля и коплект электронной аппаратуры для подачи водорода в ДВС.

Рисунок 11. Опытный образец автомобиля ГАЗ 330232 «ГАЗЕЛЬ-ФЕРМЕР»

Перспективы внедрения водорода на автомобильном транспорте

Наиболее перспективным направлением в области использования водорода для автомобильной техники являются комбинированные энергоустановки на базе электрохимических генераторов с топливными элементами (ТЭ) . При этом, необходимым условием является получение водорода из возобновляемых, экологически чистых источников энергии, для производства которых, в свою очередь, должны использоваться экологически чистые материалы и технологии.

К сожалению, в ближайшей перспективе применение таких высокотехнологичных транспортных средств в широком масштабе проблематично. Это связано с несовершенством рядя технологий, применяемых при их производстве, недостаточной отработанностью конструкции электрохимических генераторов, ограниченностью и высокой стоимостью применяемых материалов. Например, удельная стоимость одного кВт мощности ЭХГ на топливных элементах достигает 150-300 тысяч рублей (при курсе российского рубля 30 руб/долл США). Другим важным элементом сдерживания продвижения на автомобильном рынке водородной техники с топливными элементами является недостаточная отработка конструкции таких АТС в целом. В частности, отсутствуют достоверные данные при испытании автомобиля на топливную экономичность в условиях реальной эксплуатации. Как правило, оценка эффективности работы энергоустановки установки осуществляется на основе вольт-амперной характеристики. Такая оценка эффективности не соответствует принятой в практике двигателестроения оценки эффективного КПД ДВС, при расчете которого учитываются также и все механические потери, связанные с приводом агрегетов двигателя. Нет достоверных данных по топливной экономичности автомобилей в реальных условиях эксплуатации, на величину которых оказывает влияние необходимость обслуживания дополнительных бортовых устройств и систем, устанавливаемых на автомобили как традиционно, так и вязанные с особенностями конcтракции автомобилей на топливных элементах. Нет достоверных данных и по оценке эффективности в условиях отрицательных температур, при которых необходимо осуществлять поддержание температурного режима, обеспечивающего работоспособность как самой энергоустановки и подаваемого топлива, так и подогрев кабины водителя или салона с пассажирами. Для современных автомобилей рабочий режим эксплуатации может достигать -40 оС, это особо надо учитывать в российских условиях эксплуатации.

Как известно, в топливных элементах вода является не только продуктом реакции взаимодействия водорода и кислорода, но и активно участвует в рабочем процессе генерации энергии, смачивая твердополимерные материалы, входящие в конструкцию топливных ячеек. В современной технической литературе отсутствуют данные о надежности и долговечности топливных элементов в условиях низких температур. Очень противоречивые данные публикуются в литературе и по долговечности работы ЭХГ на ТЭ.

В этой связи, вполне закономерным является продвижение рядом ведущих мировых автопроизводителей транспортных средств, работающих на водороде, оснащенных двигателями внутреннего сгорания. В первую очередь, это такие известных компании как BMW и Mazda. Двигатели автомобилей BMW Hydrogen-7 и Mazda 5 Hydrogen RE Hybrid (2008) успешно конвертированы на водород.

С точки зрения надежности конструкции, относительной низкой стоимости одного кВт установленной мощности энергоустановки на базе двигателей внутреннего сгорания работающие на водороде значительно превосходят ЭХГ на ТЭ, однако ДВС имеют, как принято считать, меньший КПД. Кроме того, в отработавших газах двигателя внутреннего сгорания может содержаться некоторое количество токсичные вещества. В качестве основного направления совершенствования автомобильной техники, оснащенной двигателем внутреннего сгорания в ближайшей перспективе следует рассматривать использование комбинированных (гибридных) энергоустановок. Наилучший результат до топливной экономичности и токсичности отработавших газов, по-видимому следует ожидать от применения гибридных установок с последовательной схемой преобразования химической энергии топлива в ДВС в механическую энергию движения автомобиля. При последовательной схеме ДВС автомобиля работает практически на постоянном режиме с максимальной топливной эффективностью, приводя в движение электрогенератор, который подает электрический ток на электромотор привода колес автомобиля и накопитель электроэнергии (аккумулятор). Основной задачей оптимизации при такой схеме является поиск компромисса между топливной экономичностью ДВС и токсичностью ее отработавших газов. Особенность решения задачи заключается в том, что максимальный КПД двигателя достигается на при работе на обедненной топливовоздушной смеси, а максимальное снижение токсичности отработавших газов достигается при стехиометрическом составе, при котором количество топлива, подаваемого в камеру сгорания подается строго в соответствии с количеством воздуха, необходимым для его полного сгорания. Образование окислов азота при этом ограничивается дефицитом свободного кислорода в камере сгорания, а неполнота сгорания топлива нейтрализатором отработавших газов. В современных ДВС датчик для замера концентрации свободного кислорода в ОГ ДВС подает сигнал на электронную систему подачи топлива, которая спроектирована таким образом, чтобы максимально поддерживать стехиометрический состав топливовоздушной смеси в камере сгорания двигателя на всех режимах ДВС. Для гибридных энергоустановок с последовательной схемой, возможно добиться наилучшей эффективности регулирования топливовоздушной смеси из-за отсутствия знакопеременных нагрузок на ДВС. Вместе с тем, с точки зрения топливной экономичности, ДВС стехиометрический состав топливовоздушной смеси не является оптимальным. Максимальный КПД двигателя всегда соответствует смеси обедненной на 10-15 процентов по сравнения с стехиометрической. При этом КПД ДВС при работе на обедненной смеси может быть на 10-15 выше чем при работе на смеси стехиометрического состава. Решение проблемы повышенного выброса вредных веществ, свойственного на этих режимах для ДВС с искровым зажиганием, возможно в результате перевода работы ДВС на водород, бензоводородные топливные композиции (БВТК) или метановодородные топливные композиции (МВТК). Применение водорода в качестве топлива или в качестве добавки к основному топливу может позволить существенно расширить пределы эффективного обеднения топливовоздушной смеси. Это обстоятельство позволяет существенно увеличить КПД ДВС и снизить токсичность отработавших газов.

В отработавших газах двигателей внутреннего сгорания содержится свыше 200 различных углеводородов. Теоретически, в случае сгорания гомогенных смесей (из условий равновесия) углеводородов в отработавших газах ДВС не должно содержаться, однако из-за негомогенности топливовоздушной смеси в камере сгорания ДВС возникают разные начальные условия протекания реакции окисления топлива. Температура в камере сгорания различается по ее объему, что также существенно влияет на полноту сгорания топливовоздушной смеси. В ряде исследований было установлено, что вблизи сравнительно холодных стенок камеры сгорания происходит гашение пламени. Это приводит к ухудшению условий сгорания топливовоздушной смеси в пристеночном слое. В работе Daneshyar H и Watf M произвели фотографирование процесса сгорания бензовоздушной смеси в непосредственной близости от стенки цилиндра двигателя. Фотографирование осуществлялось через кварцевое окно в головке цилиндра двигателя. Это позволило определить толщину зоны гашения в пределах 0,05-0,38 мм. В непосредственной близости от стенок камеры сгорания СН в 2-3 раза возрастает. Авторы делают вывод, что зона гашения является одним из источников выделения углеводородов.

Другим важным источником образования углеводородов является моторное масло, которое попадает в цилиндр двигателя в результате не эффективного удаления со стенок маслосъемными кольцами или через зазоры между стержнями клапанов и их направляющими втулками. Исследования показывают, что расход масла через зазоры между стержнями клапанов и их направляющими втулками в автомобильных бензиновых ДВС достигает 75% общего расхода масла на угар.

При работе ДВС на водороде в топливе не содержится углеродосодержащих веществ. В этой связи подавляющее большинство публикаций содержит сведения о том, что в отработавших газах ДВС не может содержаться углеводородов. Однако это оказалось не так. Безусловно, с увеличение концентрации водорода в БВТК и МВТК концентрация углеводородов существенно снижается, но не исчезает полностью. Во много это может быть связано с несовершенством конструкцией топливной аппаратуры, дозирующей подачу углеводородного топлива. Даже небольшая утечка углеводородов при работе ДВС на сверхбедных смесях может привести к выбросу углеводородов. Такой выброс углеводородов может быть связан с износом цилиндропоршневой группы и как следствием повышенным угаром масла и др. В этой связи при организации процесса сгорания необходимо поддерживать температуру сгорания на таком уровне, при котором имеет место достаточно полно сгорание углеводородных соединений.

В процессе сгорания топлива окислы азота формируются за фронтом пламени в зоне повышенной температуры, вызванной реакцией сгорания топлива. Образование окислов азота, если это не азотосодержащие соединения образуются в результате взаимодействия кислорода и азота воздуха. Общепринятой теорией образования окислов азота является термическая теория. В соответствии с этой теорией выход окислов азота определяется максимальной температурой цикла, концентрацией азота и кислорода в продуктах сгорания и не зависит от химической природы топлива рода топлива (при отсутствии в топливе азота). В отработавших газах ДВС с искровым зажиганием содержание окиси азота составляет 99% от количества всех окислов азота (NOx). После выхода в атмосферу происходит окисление NO до NO2.

При работе ДВС на водороде образование окиси азота имеет некоторые особенности по сравнению с работой двигателя на бензине. Это связано с физико-химическими свойствами водорода. Главными факторами в этом случае являются температура сгорания водородовоздушной и ее пределы воспламенения. Как известно пределы воспламенения водородовоздушной смеси находятся в диапазоне 75% — 4,1%, что соответствует коэффициенту избытка воздуха 0,14 - 9,85, в то время как у изооктана в диапазоне 6,0%-1,18%, что соответствует коэффициенту, избытка воздуха 0,29 - 1,18. Важной особенностью сгорания водорода является повышенная скорость сгорания стехиометрических смесей. На рис. 12 представлен график зависимостей, характеризующих протекание рабочих процессов ДВС при работе на водороде и бензине.

Рисунок 12. Изменение параметров рабочего процесса ДВС при работена водороде и бензине, мощность ДВС 6,2 кВт, частота вращенияколенчатого вала 2400 об/мин.

Как следует их графиков, перевод ДВС с бензина на водород приводит в области стехиометрических смесей к резкому возрастанию максимальной температуры цикла. На графике видно, что скорость тепловыделения при работе ДВС на водороде в верхней мертвой точке ДВС в 3-4 раза выше, чем при работе на бензине При этом на индикаторной диаграмме отчетливо видны следы колебания давления, появление которых в конце такта сжатия свойственно «жесткому» сгоранию топливовоздушной смеси. На рис.13 представлены индикаторные диаграммы, описывающие изменение давления в цилиндре ДВС (ЗМЗ-24Д, Vh=2,4 л. степ. сжатия -8,2). в зависимости от угла поворота коленчатого вала (мощность 6,2 кВт, ч. в. к 2400 об/мин) при работе на бензине и водороде.

Рисунок 13. Индикаторные диаграммы ДВС (ЗМЗ-24-Д, Vh=24 л., степеньсжатия 8,2) примощности 6,2 кВт и ч. в. к 2400 об/мин. при работе на бензине и водороде

При работе ДВС на бензине отчетливо видна неравноменость протекания индикаторных диаграмм от цикла к циклу. При работе на водороде, особенно при стехиометрическом составе, неравномерность отсутствует. При этом угол опережения зажигания был настолько мал, что практически можно считать его равным нулю. Обращает на себя очень резкое нарастание давления за ВМТ, свидетельствующее о повышенной жесткости процесса. На нижнем графике представлены индикакторные диаграммы при работе на водороде при коэффициенте избытка воздуха 1,27. Угол опережения зажигания составлял 10 градусов п. к. в. На некоторых индикакторых диаграммах явно видны следы «жесткой » работы ДВС. Такой характер протекания рабочего процесса ДВС при использовании в качестве топлива водорода способствует повышенному образованию окислов азота. Максимальное значение концентрации окислов азота в ОГ соответствует работе ДВС с коэффициентом избытка воздуха 1,27. Это вполне закономерно, т. к. в топливовоздушной смеси содержится большое количество свободного кислорода и в результате высоких скростей сгорания имеет место высокая температура сгорания топливовоздушного заряда. Вмеасте с тем, при переходе на более бедные смесях скорости тепловыделения снижаются. Снижаются и максимальная температура цикла, а следовательно и концентрация в ОГ окислов азота.

Рисунок 14. Регулировочные характеристики по составу смеси при работе ДВС на бензоводородных топливных композициях, мощность ДВС 6,2 кВт, частота вращения коленчатого вала 2400 об/мин. 1. Бензин, 2. Бензин +Н2 (20%), 3. Бензин +Н2 (50%), 4. Водород

На рис. 14 представлены зависимости изменения выброса токсичных веществ с ОГ ДВС при работе на бензине, бензоводородных композициях и водороде. Как следует из графика наибольшее значение выбросов NOx соответствует работе ДВС на водороде. Вместе с тем по мере обеднения топливовоздушной смеси концентрация NOx снижается достигая практически нулевого значения при коэффициенте избытка воздуха большего 2 единиц. Таким образом перевод автомобильного двигателя на водород позволяет кардинально решить проблему топливной экономичности, токсичности отработавших газов и снижения выброса двуокиси углерода.

Применение водорода в качестве добавки к основному топливу может способствовать решению задачи улучшения топливной экономичности ДВС, снижения выброса токсичных веществ и уменьшения выброса двуокиси углерода, требования по содержанию которой в ОГ ДВС постоянно ужесточаются. Добавка водорода по массе в диапазоне 10-20 процентов может стать для автомобилей с гибридными двигателями оптимальной в самое ближайшее время.

Применение водорода в качестве моторного толива может быть эффективно только лишь при создании специализированных конструкций. В настоящее время ведущие производители автомобильных двигателей работают над созданием таких моторов. В принципе, основные направления по которым необходимо двигатья при создании новой конструкции водородных ДВС известны. К ним относятся:

1. Применение внутреннего смесеобразования позволит улучшить на 20-30 процентов удельные массогабаритные показатели водородного двигателя.

2. Применение сверх бедных водородовоздушных смесей для гибридных энергоустановок даст возможность существенно снизить температуру сгорания в камере сгорания ДВС и создаст предпосылки для повышения степени сжатия ДВС, использования новых материалов, в том числе и для внутренней поверхности камеры сгорания, позволяющих снизить потери тепла в систему охлаждения двигателя.

Все это по мнению специалистов позволит довести эффективный КПД ДВС, работающего на водороде до 42-45 процентв, что вполне сопоставимо с КПД электрохимических генераторов, для которых в настоящее время нет данных по экономической эффективности в условиях реальной эксплуатации автомобилей с учетом привода вспомогательных агрегатов, отоплания салона и др.

Мы живем в 21 веке, пришло время для создания топлива будущего, которое заменит традиционное топливо и ликвидирует нашу зависимость от него. Ископаемые виды топлива сегодня являются нашим основным источником энергии.

За последние 150 лет количество углекислого газа в атмосфере увеличилось на 25%. Сжигание углеводородов приводит к загрязнениям, таким как смог, кислотные дожди и загрязнение воздуха.

Каким будет топливо будущего?

Водород — альтернативный вид топлива будущего

Водород бесцветный газ без запаха, составляет 75% массы всей Вселенной. Водород на Земле существует только в сочетании с другими элементами, такими как кислород, углерод и азот.

Чтобы использовать чистый водород, он должен быть отделен от этих других элементов, чтобы быть использованным в качестве топлива.

Переход на водород всех автомобилей и всех автозаправочных станций непростая задача, но в долгосрочной перспективе, переход на водород, как альтернативный вид топлива для автомобилей, будет очень выгодно.

Превращение воды в топливо

Водные топливные технологии используют воду, соль и очень недорогой металлический сплав. Газ, что результатом этого процесса является — чистый водород, который горит как топливо без необходимости использования внешнего кислорода — и не выделяет никаких загрязнений.

Морская вода может использоваться непосредственно в качестве основного топлива, тем самым устраняя необходимость добавления соли.

Есть еще один способ превращения воды в топливо. Он называется электролизом. Этот метод превращения воды в газ Брауна, который также является прекрасным топливом для нынешних бензиновых двигателей.

Почему газ Брауна лучшее топливо, чем чистый водород?

Давайте посмотрим на все три вида водородного топливного решения — топливные элементы, чистый водород, и газ Брауна — и посмотрим, как они работают по отношению к кислороду и его потреблению:

Топливные элементы: Этот метод использует кислород из атмосферы при полном сжигании водорода в топливных элементах. Что выходит из выхлопной трубы? Кислород и пары воды! Но кислород изначально пришел из атмосферы, а не из топлива.

И поэтому использование топливных элементов не решает проблему: окружающая среда испытывает огромные проблемы на данный момент с содержанием кислорода в воздухе; мы теряем кислород.

Водород: Это топливо является совершенным, если бы не одно «но». Хранение и распределение водорода требует специального оборудования, а топливные баки автомобилей должны выдерживать высокое давление сжиженного газа водорода.

Газ Брауна: Это самое совершенное топливо для работы всех наших транспортных средств. Чистый водород поступает непосредственно из воды, то есть, пара водород — кислород, но, кроме того, он горит в двигателе внутреннего сгорания, выделяя кислород в атмосферу: из выхлопной трубы входит в атмосферу кислород и пары воды.

Так, при сжигании газа Брауна в качестве топлива, можно увеличить кислород воздуха и тем самым увеличить содержание кислорода в нашей атмосфере. Это способствует решению очень опасной экологической проблемы.

Газ Брауна — идеальное топливо будущего

Об использовании воды в качестве альтернативного вида топлива для автомобилей, о планах преобразования бензиновых двигателей для работы на обычной водопроводной воде, этот постулат является мировым переворотом в сознании людей.

Теперь только вопрос времени, когда все поймут, что вода лучшее топливо для нашего транспорта. Лицо или лица, которые дали нам это знание, мы должны их помнить как героев.

Их убивали, их патенты скупались частными лицами, чтобы их изобретения не стали достоянием гласности; информация об автомобилях на воде жила в Интернете не более 1-2 часов…
Но сейчас что-то изменилось, видимо, власть имущие решили «Пусть начнутся игры»!

Автомобилей на воде работает, и мы знаем это наверняка. Работа бензиновых двигателей на воде — это как трамплин для гораздо лучших технологий, чем те, которые уже существуют и которые быстро заменят идею ведения автомобилей на воде.

Но пока нефтяные компании душат идею автомобиля на воде, овладеть более высокими технологиями не получится, и использование нефти будет продолжаться. Это общее мнение ученых, так говорят во всем мире.

Может ли использование воды в виде топлива изменить жизнь Земли?

Известно ли Вам, что водоснабжение Земли не является статическим? Количество воды на Земле увеличивается с каждым днем.

Было обнаружено, что в последние несколько лет, большое количество воды ежедневно прибывает из космоса в виде водных астероидов!

Эти огромные астероиды — мегатонны воды, которые попав в верхние слои атмосферы, немедленно испаряются, и в конце концов оседают на Землю.

Вы можете просмотреть фотографии НАСА этих астероидов в первой книге доктора Эмото, «Сообщение о воде«. Почему эти водные астероиды ближаются к Земле, а не на другие планеты, такие как Марс, остается загадкой.

И действительно ли то, что это происходит только сейчас или это происходило на протяжении всей истории Земли. Другое дело, что никто не знает ответа.

Таяние ледников . Помимо этого, уровень океана повышается из-за таяния ледников. Как следствие потепления климата, начинает быть слишком много воды на Земле.

Я разговаривал с учеными, которые считают, что было бы реально помочь, если бы небольшое количество воды было как-то использовано в это время — например, для работы машин.

Запуск автомобилей на воде поможет пополнить кислород в нашей атмосфере: главная причина для перехода на воду в качестве топлива — наши текущие экологические проблемы.

Они настолько велики, что если мы не будем делать что-то для снижения использования ископаемых видов топлива, наша Земля будет уничтожена. И уже не будет имеет значения, если ли у планеты вода или ее нет.

Иногда человек потребляет то, что является потенциально опасным для того, чтобы стать здоровым. Запуск автомобилей на воде сродни этой концепции. Это может быть потенциально опасным, если бы мы продолжали использовать воду в качестве топлива для чрезмерного периода времени.

Но учитывая все обстоятельства, это решение является лучшим из того, что правительства могут себе позволить на время.

Даже правительства готовятся запустить автомобили на топливных элементах, где топливом является водород. И для реализации этой технологии, нам не придется изменять наши двигатели — альтернативный источник нашего топлива может быть не единственным.

По всему миру катаются около пятидесяти миллионов авто, которые ездят на бензине или дизельном топливе. Нефть не безгранична и значит возникает вопрос — на чем будут ездить автомобили через 30-40 лет?

Какое топливо доступно

Начнем с гибридных автомобилей. Они сочетают небольшой двигатель внутреннего сгорания (ДВС) и электропривод с аккумуляторными батареями. Энергия от двигателя и от тормозной системы автомобиля используется для зарядки аккумуляторов, питающих электропривод. Типичные гибридные двигатели позволяют на 20−30% эффективнее использовать топливо по сравнению с традиционными ДВС и выбрасывают в атмосферу значительно меньше вредных веществ.

Как мы знаем, без бензина гибриды далеко не уедут , так что этот вариант убираем. Электромобили пока кажется оптимальным вариантом, но нормальных машин на электрической тяге мало. И запас хода у них маловат, особенно если путешествуете на дальние расстояния. Стоимость также велика. Этот вариант на будущее, а искать альтернативное топливо нужно сейчас.

Дальше по списку идут автомобили на альтернативном топливе , по типу спиртового топлива, биодизеля или этанола. Этот вариант, на первый взгляд, кажется отличным, к тому же создаются автомобили на альтернативном топливе и они отлично себя показали. Но если все машины «пересадить» на биотопливо, то подорожают продукты питания, т.к. для производства этого вида топлива нужны большие посевочные площади.

Другое дело — водород для заправки автомобилей. Он перспективнее по нескольким причинам: масса водородной батареи меньше, перезаправка быстрее, производство аккумуляторов дороже и требует больше разных экзотических элементов, сеть заправочных станций организовать гораздо проще чем зарядные, есть и другие плюсы…

Электричество — топливо будущего?

Авто компании уже вкладывают огромные деньги на разработку альтернативного топлива, создаются электромобили с большим запасом хода. Если в начале они имели запас хода не более 100 километров, то сейчас некоторые могут похвастаться запасом без подзарядки до 300-400 километров пробега. Если даже будут развиваться технологии и появятся новые типы аккумуляторных батарей для электромобилей, то запас можно увеличить до 500 км.

Применяемость электромобилей с большим запасом хода на этом не ограничивается. Нужно строить заправки по всему миру, их должно быть большое количество. Причем заправки должны быть быстрые , когда машина может «запитаться» электричеством по времени не более 1 часа (в идеале 10-20 минут). Сейчас на полную подзарядку уходит до 16-24 часов в зависимости от емкости батарей.

Как понимаете, нужно полностью менять дорожную сеть, и на это могут пойти крупные нефтяные компании. Они обладают большим количеством авто заправок. Нужно всего лишь рядом поставить колонки для заправки электромобилей. Тогда количество машин на электрической тяге возрастет, ведь проблема дозаправки будет решена.

Исходя из сказанного: для электромобилей пока нет нормальных батарей которые были бы всепогодны и принимали бы заряд хотя бы за минуты. К тому же электромобили дороги для большинства автолюбителей. Но со временем и развитием технологий, их стоимость снизится, они станут доступны для каждого.