Никель кадмиевые аккумуляторы 12 в. Аккумуляторы Ni-Cd

В течение целых пятидесяти лет портативные устройства для автономной работы могли полагаться исключительно на никель-кадмиевые источники питания. Но кадмий очень токсичный материал, и в 1990-х на смену никель-кадмиевой технологии пришла более экологичная никель-металл-гидридная. По сути эти технологии очень схожи, и большинство характеристик никель-кадмиевых аккумуляторов передались по наследству никель-металл-гидридным. Но тем не менее, для некоторых применений никель-кадмиевые аккумуляторы остаются незаменимыми и используются по сей день.

1. Никель-кадмиевые аккумуляторы (NiCd)

Изобретенный Вальдмаром Юнгнером в 1899 году, никель-кадмиевый аккумулятор имел несколько преимуществ по сравнению со свинцово-кислотным, единственным существовавшим тогда аккумулятором, однако был более дорогим из-за стоимости материалов. Развитие этой технологии было довольно медленным, но в 1932 году был сделан значительный прорыв - в качестве электрода стал использоваться пористый материал с активным веществом внутри. Дальнейшее усовершенствование было сделано в 1947 году и решило проблему газопоглощения, что позволило создать современную герметичную необслуживаемую никель-кадмиевую батарею.

На протяжении многих лет именно NiCd батареи служили в качестве источников питания для двухсторонних радиостанций, экстренной медицинской техники, профессиональных видеокамер и электроинструмента. В конце 1980-х были разработаны ультраемкие NiCd аккумуляторы, которые потрясли мир своей емкостью, на 60% превышающей показатель стандартной батареи. Это было достигнуто благодаря размещению большего количества активного вещества в батарее, но добавились и недостатки - повысилось внутреннее сопротивление и уменьшилось количество циклов заряда/разряда.

NiCd стандарт остается одним из самых надежных и непритязательных среди аккумуляторных батарей, и авиационная отрасль остается верной этой системе. Тем не менее, долговечность этих аккумуляторов зависит от надлежащего обслуживания. NiCd, и отчасти NiMH аккумуляторы, подвержены эффекту “памяти”, который приводит к потере емкости, если периодически не делать полный цикл разряда. При нарушении рекомендованного режима зарядки аккумулятор будто помнит, что в предыдущие циклы работы его емкость не была использована полностью, и при разряде отдает электроэнергию только до определенного уровня. (Смотрите: Как восстановить никелевый аккумулятор ). В таблице 1 перечислены преимущества и недостатки стандартного никель-кадмиевого аккумулятора.

Преимущества Надежный; большое количество циклов при правильном обслуживании
Единственный аккумулятор, способный к ультрабыстрой зарядке с минимальным стрессом
Хорошие нагрузочные характеристики, прощает их преувеличение
Длительный срок хранения; возможность хранения в разряженном состоянии
Отсутствие специальных требований к хранению и транспортировке
Хорошая производительность при низких температурах
Самая низкая стоимость одного цикла работы среди всех аккумуляторов
Доступен в широком диапазоне размеров и вариантов исполнения
Недостатки Относительно низкая удельная энергоемкость в сравнении с более новыми системами
Эффект “памяти”; необходимость периодического обслуживания для его избежания
Кадмий является токсичным материалом, необходима специальная утилизация
Высокий саморазряд; нуждается в подзарядке после хранения
Низкое напряжение ячейки в 1,2 вольта, требует построения многоячеечных систем для обеспечения высокого напряжения

Таблица 1: Преимущества и недостатки никель-кадмиевых батарей.

2. Никель-металл-гидридные аккумуляторы (NiMH)

Исследования никель-металл-гидридной технологии начались еще в 1967 году. Однако нестабильность металл-гидрида тормозила разработку, что в свою очередь привело к развитию никель-водородной (NiH) системы. Новые гидридные сплавы, обнаруженные в 1980-х, решили проблемы с безопасностью, и позволили создать аккумулятор с удельной энергоемкостью на 40% большей, чем у стандартного никель-кадмиевого.

Никель-металл-гидридные аккумуляторы не лишены недостатков. Например, их процесс зарядки более сложен, чем у NiCd. С саморазрядом в 20% за первые сутки и последующей ежемесячной в 10%, NiMH занимают одну из лидирующих позиций в своем классе. Модифицируя гидридный сплав, можно добиться снижения саморазряда и коррозии, но это добавит недостаток в виде уменьшения удельной энергоемкости. Но в случае использования в электротранспорте, эти модификации весьма полезны, так как повышают надежность и увеличивают срок службы батарей.

3. Использование в потребительском сегменте

NiMH батареи в данный момент являются одними из самых легкодоступных. Такие гиганты отрасли как Panasonic, Energizer, Duracell и Rayovac признали необходимость присутствия на рынке недорогого и долговечного аккумулятора, и предлагают никель-металл-гидридные источники питания разных типоразмеров, в частности АА и ААА. Производителями тратятся большие усилия, чтобы отвоевать часть рынка у щелочных батарей.

В этом сегменте рынка никель-металл-гидридные батареи являются альтернативой перезаряжаемым щелочным батареям , которые появились еще в 1990 году, но из-за ограниченного жизненного цикла и слабых нагрузочных характеристик не снискали успеха.

В таблице 2 сравниваются удельная энергоемкость, напряжение, саморазряд и время работы батареек и аккумуляторов потребительского сегмента. Представленные в АА, ААА и других типоразмерах, эти источники питания могут использоваться в портативных устройствах. Даже если у них может немного различается номинальный вольтаж, состояние разряда, как правило, наступает при одинаковом для всех фактическом значении напряжения в 1 В. Эта широта значений напряжения допустима, так как портативные устройства имеют некоторую гибкость в плане диапазона напряжений. Главное – необходимо вместе использовать только однотипные электрические элементы. Проблемы безопасности и несовместимость напряжения препятствуют развитию литий-ионных батарей в АА и ААА типоразмере.

Таблица 2: Сравнение различных батарей типоразмера АА.

* Eneloop является торговой маркой корпорации Sanyo, основанной на NiMH системе.

Высокий показатель саморазряда NiMH является причиной продолжающейся озабоченности потребителей. Фонарь или портативное устройство с батареей NiMH разрядится, если не пользоваться им несколько недель. Предложение заряжать устройство перед каждым использованием навряд ли найдет понимание, особенно в случае с фонарями, которые позиционируются как источники резервного освещения. Преимущество щелочной батареи со сроком хранения в 10 лет тут видится бесспорным.

В никель-металл-гидридной батарее от Panasonic и Sanyo под торговой маркой Eneloop удалось значительно уменьшить саморазряд. Eneloop может храниться без подзарядки в шесть раз дольше чем обычная NiMH. Но недостатком такой улучшенной батареи является немного меньшая удельная энергоемкость.

В таблице 3 приведены преимущества и недостатки никель-металл-гидридной электрохимической системы. В таблице не учтены характеристики Eneloop и других потребительских торговых марок.

Преимущества На 30-40 процентов большая емкость по сравнению с NiCd
Менее склонны к эффекту “памяти”, могут быть восстановлены
Простые требования к хранению и транспортировке; отсутствие регулирования этих процессов
Экологически чистые; содержат только умеренно токсичные материалы
Содержание никеля делает утилизацию самоокупающейся
Широкий диапазон рабочих температур
Недостатки Ограниченный срок службы; глубокие разряды способствуют ее уменьшению
Сложный алгоритм зарядки; чувствительны к перезаряду
Особые требования к режиму подзарядки
Выделяют тепло во время быстрой зарядки и разряда мощной нагрузкой
Высокий саморазряд
Кулоновская эффективность на уровне 65% (для сравнения у литий-ионных - 99%)

Таблица 3: Преимущества и недостатки NiMH батарей.

4. Железо-никелевые аккумуляторы (NiFe)

После изобретения в 1899 году никель-кадмиевого аккумулятора шведский инженер Вальдмар Юнгнер продолжил исследования и пытался заменить дорогой кадмий более дешевым железом. Но низкая эффективность заряда и чрезмерное газообразование водорода заставили его отказаться от дальнейшего развития NiFe батареи. Он даже не стал патентовать эту технологию.

Железо-никелевый аккумулятор (NiFe) использует в качестве катода гидрат окиси никеля, анода - железо, а электролита - водный раствор гидроксида калия. Ячейка такого аккумулятора генерирует напряжение в 1,2 В. NiFe устойчив к излишнему перезаряду и глубокому разряду; может эксплуатироваться в качестве резервного источника питания в течение более чем 20 лет. Устойчивость к вибрациям и высоким температурам сделали этот аккумулятор самым используемым в горной промышленности в Европе; также он нашел свое применение для обеспечения питания железнодорожной сигнализации, также используется как тяговой аккумулятор для погрузчиков. Можно отметить, что во время Второй мировой войны именно железо-никелевые батареи использовались в немецкой ракете “Фау-2”.

NiFe имеет низкую удельную мощность - примерно 50 Вт/кг. Также к недостаткам стоит отнести плохую производительность при низких температурах и высокий показатель саморазряда (20-40 процентов в месяц). Именно это, вкупе с высокой стоимостью производства, побуждает производителей оставаться верными свинцово-кислотным батареям.

Но железо-никелевая электрохимическая система активно развивается и в недалеком будущем способна стать альтернативой свинцово-кислотной в некоторых отраслях. Перспективно выглядят экспериментальная модель ламельной конструкции, в ней удалось снизить саморазряд аккумулятора, он стал практически невосприимчив к пагубному воздействию пере- и недозарядки, а его срок службы ожидается на уровне 50 лет, что сопоставимо с 12-летним сроком службы свинцово-кислотной батареи в режиме работы при глубоких циклических разрядах. Ожидаемая цена такой NiFe батареи будет сравнима с ценой литий-ионной, и всего в четыре раза превышать цену свинцово-кислотной.

NiFe аккумуляторы, равно как и NiCd и NiMH , требуют особых правил зарядки - кривая напряжения имеет синусоидальную форму. Соответственно, использовать зарядное устройство для свинцово-кислотного или литий-ионного аккумулятора не выйдет, это даже может навредить. Как и все батареи на основе никеля, NiFe боятся перезаряда - он вызывает разложение воды в электролите и приводит к ее потере.

Сниженную в результате неправильной эксплуатации емкость такого аккумулятора можно восстановить путем приложения высоких токов разрядки (соразмерных значению емкости аккумулятора). Данную процедуру необходимо проводить до трех раз с длительностью периода разряда в 30 минут. Также следует следить за температурой электролита - она не должна превышать 46°С.

5. Никель-цинковые аккумуляторы (NiZn)

Никель-цинковый аккумулятор похож на никель-кадмиевый тем, что использует щелочной электролит и никелевый электрод, но отличается по напряжению - NiZn обеспечивает 1,65 В на ячейку, в то время как NiCd и NiMH имеют показатель в 1,20 В на ячейку. Заряжать NiZn аккумулятор необходимо постоянным током с значением напряжения 1,9 В на ячейку, также стоит помнить, что этот вид аккумуляторов не рассчитан для работы в режиме подзарядки. Удельная энергоемкость составляет 100Вт/кг, а количество возможных циклов - 200-300 раз. NiZn не имеет в своем составе токсичных материалов и может быть легко утилизирован. Выпускается в различных типоразмерах, в том числе в АА.

В 1901 году Томас Эдисон получил патент США на перезаряжаемую никель-цинковую батарею. Позже его разработки были усовершенствованны ирландским химиком Джеймсом Драммом, который установил эти аккумуляторы на автомотрисы, которые курсировали по маршруту Дублин-Брей с 1932 по 1948 год. NiZn не получил должного развития из-за сильного саморазряда и короткого жизненного цикла, вызванного образованиями дендритов, что также часто приводило к короткому замыканию. Но совершенствование состава электролита уменьшило эту проблему, что дало повод снова рассматривать NiZn для коммерческого использования. Низкая стоимость, высокая выходная мощность и широкий диапазон рабочих температур делают эту электрохимическую систему крайне привлекательной.

6. Никель-водородные аккумуляторы (NiH)

Когда в 1967 началась разработка никель-металл-гидридных батарей, исследователи столкнулись с нестабильностью гидритов металла, что вызвало сдвиг в сторону развития никель-водородного (NiH) аккумулятора. Ячейка такого аккумулятора включает в себя инкапсулированный в сосуд электролит, никелевый и водородный (водород заключен в стальной баллон под давлением в 8207 бар) электроды.


Основные типы аккумуляторов:

Ni-Cd Никель-кадмиевые аккумуляторы

Для аккумуляторного инструмента никель-кадмиевые аккумуляторы являются фактическим стандартом. Инженерам хорошо известны их достоинства и недостатки, в частности Ni-Cd Никель-кадмиевые аккумуляторы содержат кадмий – тяжёлый металл повышенной токсичности.

У никель-кадмиевых аккумуляторов есть так называемый «эффект памяти» суть которого сводится к тому, что при заряде не полностью разряженного аккумулятора его новый разряд возможен только до того уровня, с которого его зарядили. Другими словами аккумулятор «помнит» уровень остаточного заряда, с которого его полностью зарядили.

Итак, при заряде не полностью разряженного Ni-Cd аккумулятора происходит уменьшение его ёмкости.

Существует несколько способов борьбы с этим явлением. Опишем только самый простой и надёжный способ.

При использовании аккумуляторного инструмента с Ni-Cd аккумуляторными батареями следует придерживаться простого правила: заряжать только полностью разряженные аккумуляторы.

Рекомендуется хранить Ni-Cd Никель-кадмиевые аккумуляторные батареи в разряженном состоянии, желательно чтобы разряд не был глубоким, в противном случае это может вызвать необратимые процессы в батарее.

Плюсы Ni-Cd Никель-кадмиевых аккумуляторов

  • Низкая цена Ni-Cd Никель-кадмиевых аккумуляторов
  • Возможность отдавать наибольший ток нагрузки
  • Возможность быстрого заряда аккумуляторной батареи
  • Сохранение высокой ёмкости аккумулятора до -20°C
  • Большое количество циклов заряда-разряда. При правильной эксплуатации подобные аккумуляторы отлично работают и допускают до 1000 циклов заряда-разряда и более

Минусы Ni-Cd Никель-кадмиевых аккумуляторов

  • Относительно высокий уровень саморазряда – Ni-Cd Никель-кадмиевый аккумулятор теряет порядка 8-10% своей ёмкости в первые сутки после полного заряда.
  • Во время хранения Ni-Cd Никель-кадмиевый аккумулятор теряет порядка 8-10% заряда каждый месяц
  • После длительного хранения ёмкость Ni-Cd Никель-кадмиевого аккумулятора восстанавливается после 5 циклов разряда-заряда.
  • Для продления срока службы Ni-Cd Никель-кадмиевого аккумулятора рекомендуется каждый раз полностью его разряжать для предотвращения проявления «эффекта памяти»

Ni-MH Никель-металлогидридные аккумуляторы

Эти аккумуляторы предлагаются на рынке как менее токсичные (по сравнению с Ni-Cd Никель-кадмиевыми аккумуляторами) и более экологически безопасные, как в производстве, так и при утилизации.

На практике Ni-MH Никель-металлогидридные аккумуляторы действительно демонстрируют весьма большую ёмкость при габаритах и массе, несколько меньших, чем у стандартных Ni-Cd Никель-кадмиевых аккумуляторов.

Благодаря практически полному отказу от применения токсичных тяжелых металлов в конструкции Ni-MH Никель-металлогидридных аккумуляторов последние после использования могут быть утилизованы вполне безопасно и без экологических последствий.

У никель-металлогидридных аккумуляторов несколько снижен «эффект памяти». На практике «эффект памяти» практически незаметен из-за высокого саморазряда этих аккумуляторов.

При эксплуатации Ni-MH Никель-металлогидридных аккумуляторов желательно разряжать их в процессе работы не полностью.

Хранить Ni-MH Никель-металлогидридные аккумуляторы следует в заряженном состоянии. При длительных (более месяца) перерывах в работе аккумуляторы следует перезаряжать.

Плюсы Ni-MH Никель-металлогидридных аккумуляторов

  • Нетоксичные аккумуляторы
  • Меньший «эффект памяти»
  • Хорошая работоспособность при низкой температуре
  • Большая ёмкость по сравнению с Ni-Cd Никель-кадмиевыми аккумуляторами

Минусы Ni-MH Никель-металлогидридных аккумуляторов

  • Более дорогой тип аккумуляторов
  • Величина саморазряда примерно в 1.5 раза выше по сравнению с Ni-Cd Никель-кадмиевыми аккумуляторами
  • После 200-300 циклов разряда-заряда рабочая ёмкость Ni-MH Никель-металлогидридных аккумуляторов несколько снижается
  • Батареи Ni-MH Никель-металлогидридных аккумуляторов имеют ограниченный срок службы

Li-Ion Литий-ионные аккумуляторы

Несомненным достоинством литий-ионных аккумуляторов является практически незаметный «эффект памяти».

Благодаря этому замечательному свойству Li-Ion аккумулятор можно заряжать или подзаряжать по мере необходимости, исходя из потребностей. Например, можно подзарядить не полностью разряженный литий-ионный аккумулятор перед важной, ответственной или продолжительной работой.

К сожалению эти аккумуляторы являются наиболее дорогими аккумуляторными батареями. Кроме того литий-ионные аккумуляторы имеют ограниченный срок службы, независящий от числа циклов разряд-заряд.

Резюмируя можно предположить, что литий-ионные аккумуляторы лучше всего пригодны для случаев постоянной интенсивной эксплуатации аккумуляторного инструмента.

Плюсы Li-Ion Литий-ионных аккумуляторов

  • Отсутствует «эффект памяти» и поэтому появляется возможность заряжать и подзаряжать аккумулятор по мере необходимости
  • Высокая ёмкость Li-Ion Литий-ионных аккумуляторов
  • Небольшая масса Li-Ion Литий-ионных аккумуляторов
  • Рекордно-низкий уровень саморазряда – не более 5% в месяц
  • Возможность быстрого заряда Li-Ion Литий-ионных аккумуляторов

Минусы Li-Ion Литий-ионных аккумуляторов

  • Высокая стоимость Li-Ion Литий-ионных аккумуляторов
  • Сокращается время работы при температуре ниже нуля градусов Цельсия
  • Ограниченный срок службы

Примечание

Из практики эксплуатации Li-Ion Литий-ионных аккумуляторов в телефонах, фотокамерах и т.д. можно отметить, что эти аккумуляторы служат в среднем от 4 до 6 лет и выдерживают за это время около 250-300 циклов разряда-заряда. При этом абсолютно точно замечено: больше циклов разряд-заряд – короче срок службы Li-Ion Литий-ионных аккумуляторов!

Следите за новостями в нашей группе Вконтакте

Никель-кадмиевый аккумулятор (Ni-Cd Аккумуляторы) – это источник тока химического происхождения. Основные компоненты: гидроксид никеля, небольшое содержание порошка графита (не более 8%), электролитический элемент гидроксид лития. Анодом выступает гидроксид кадмия или вещество в порошкообразной консистенции. Аккумуляторы ni-cd ламельного типа способны прослужить до 25-ти лет, а обычные выдерживают от 100 до 900 циклов последовательной разрядки/зарядки.

Как заряжать никель-кадмиевые аккумуляторы?

Для восполнения электропотенциала элементов питания используются автоматические и реверсивно-импульстные зарядки. Первый вид относится к бытовым устройствам: простой в изготовлении, недорогой, может одновременно заряжать 2-4 элемента. Второй вид (профессиональный) способен не только заряжать, но и поддерживать рабочий потенциал батарей.

Аккумулятор никель-кадмиевый «помнит» граничный нижний уровень разряда, достигая которого перестаёт функционировать. Поэтому рекомендуется выполнить полную разрядку (до U=1В). Контролируйте температуру, так как при достижении 50°С элемент питания выйдет из строя.

При зарядке используют большой ток. Когда стоит задание применить максимальную мощность аккумулятора, заряжать его лучше малым током. Для ускоренного режима зарядки выбирают ступенчатую подачу тока (10% – средним током, 80% – большим током и оставшиеся 10% – минимальным током).

В батарейках никель-кадмиевых напряжение поднимается до конкретного уровня, а затем закрепляется на этом значении. При полной зарядке U снижается.

Как восстановить никель-кадмиевый аккумулятор

При полной разрядке аккумулятор ni-cd перестаёт реагировать на зарядку. Существует способ восстановления его работоспособности.

При работе элемента питания меняется механическая прочность и количество положительного электрод. Следствием процесса является ухудшение связи между электродом и активной массой. Результат: резкое снижение ёмкости и проводимости, а затем – устранение контакта между двумя электродами.

Ёмкость падает по причине сращивания кристаллов, возникающего при перезаряде. Плюс увеличивается самостоятельный разряд, особенно при длительном хранении.

Батареи никель-кадмиевые восстанавливаются при резком воздействии (по типу касаний, 2-3 раза в секунду) током высокого значения. Это вызовет дробление крупных кристаллов, обновление ёмкости и уменьшение собственного разряда. После этого элементы питания можно заряжать стандартными способом.

Никель-кадмиевые аккумуляторы или литий-ионные аккумуляторы

Если никель-кадмиевый аккумулятор купить, хорошо попользоваться им и положить на хранение, то это не приведёт к порче батареи. А литий-ионные аналоги перед хранением следует зарядить.

Ni-Cd

Радует

  • Маленькая стоимость.
  • Быстрый заряд и работа при высоком токе нагрузки.
  • Многоразовая зарядка (обязательно «с нуля»).
  • Использование при температуре до -20°С.

Огорчает

  • Высокий сброс заряд.
  • При долгом бездействии потребуется до 5-ти восстановительных циклов заряда/разряда.
  • Чтобы исключить «память», желательно каждый раз добиваться полной разрядки батареи.

Аккумуляторы автомобильные никель-кадмиевые часто используются для переносного электроинструмента.

Li-Ion

Радует

  • Нет «эффекта памяти», поэтому батарею можно подзаряжать в любое время.
  • Подходит для постоянного использования, на хранение можно оставлять, когда заряда остаётся около 50%.
  • Разряжается очень медленно (до5% за 30 дней), облдет хорошей ёмкостью и быстро восстанавливает свой потенциал.

Огорчает

  • Не подходит для долгой работы при минусовых температурах.
  • Требует больших финансовых затрат, чем батарея никель-кадмиевая.
  • Имеет ограниченный временной ресурс использования.

Применяемые в цифровых фотоаппаратах, камерах, электронных микроскопах, сотовых телефонах, литий-ионные аккумуляторы прослужат до 5-ти лет.

Может быть не все знают, что во всех самой различной формы аккумуляторах для ручного электроинструмента стоят унифицированные банки напряжением 1.2В и различной мощности. Имеет значение только размер банки (а они бывают 2х самых распространенных типоразмеров) и мощность измеряемая в амперах или миллиамперах. Чем большей емкости батареи - тем дольше проработает инструмент от одной зарядки.

В первую очередь посмотрите, что написано на корпусе аккумулятора. Нам нужно знать всего три значения. Это тип аккумулятора (Ni-Cd или Ni-MH или LI-Ion) напряжения (обычно 12V или 14.4V 18v 24V) и емкость батареи (что то вроде 1200mA 1.2A 2000mA 2400mA и т.д.) На недорогих моделях указано только напряжение. Это почти всегда означает никель кадмиевые SC на 1200mA Для уточнения потребуется разборка корпуса.

Если у вас стояли Ni-Cd аккумуляторы, то можно использовать только такие же Ni-Cd хотя на качественном инструменте ЗУ шли единые и заряжали как те так и другие типы. А на бюджетном и подавно, главное правильно рассчитать время зарядки.

Если у вас стояли Ni-MH как Ni-MH так и Ni-Cd

Если у вас стояли Li-Ion аккумуляторы можно использовать только Li-Ion.

Это обусловлено типом зарядных устройств для Вашей модели инструмента. Хотя как показала практика, NI-MH аккумуляторы прекрасно заряжают все зарядные устройства.

Банки стоящие в блоке спаяны последовательно, делим напряжения блока на 1.2 и получаем кол-во банок стоящих внутри блока. Зная количество, тип и емкость аккумуляторов смотрим цену за 1 штуку и решаем, стоит ли овчинка выделки) Для качественного инструмента однозначно да, для китайских бюджетных моделей стоимость может превышать цену нового инструмента раза в два-три. Но следует учитывать, что собранный из нормальных аккумуляторов блок будет и работать долго, тогда как новый бюджетный инструмент закрутит 5-10 саморезов и потребует зарядки.

Если вы все же решили заняться переборкой аккумулятора, нужно разобрать корпус и достать спаянные между собой банки. В основном корпуса собраны на саморезах, но встречаются как клееные так и с использованием винтов со звездочкой, в этом случае придется приобрести специальную отвертку. Посмотрите что написано на самих банках. Это могут быть бочонки 4/5 SC или просто SC. (Можно измерить их по высоте,SC 42мм в длину, 4/5 SC 32 мм) На замену мы предлагаем оптимальные на сегодняшний день по соотношению цена/емкость модели. Для аккумуляторов 4/5 SC это банки емкостью 1200 mAh в или . Влияние оболочки на срок службы не выявлено. Для аккумуляторов полный SC это банки емкостью или .

Теперь что касается соединения банок между собой. В заводских условиях это делается контактной сваркой. Нам же придется их спаять. Аккумуляторные батареи не любят перегрева поэтому паять нужно быстро мощным паяльником с коротким жалом. Из флюсов лучше использовать ортофосфорную кислоту. С ее помощью легко облуживаются сами аккумуляторы и перемычки лучше делать из многожильной медной проволки. Кислоту после облуживания смыть водой, чтобы она не разъела место соединения. Проволку можно достать из старого отечественного антенного кабеля, это та что идет по экрану, или купить монтажную проволку, легко паяется и стоит недорого. В любом случае лучше вначале поэкспериментировать со старой банкой, попробовать припаяться к ней.

Что касается времени зарядки, то оно чаще всего вычисляется по формуле,- Емкость аккумуляторов делиться на ток ЗУ (указан на блоке питания) и умножается на 1.5. Например, Вы поставили банки на 2000мА и блок питания у Вас 400мА (Напряжение в данном случае не имеет значения.) (2000/400)*1.5=7.5 часов.

Вот вкратце все что нужно знать, что бы восстановить старый аккумулятор самостоятельно.

Так же весьма информативный отзыв по переборке аккумулятора используя элементы GP на 2000мА типа SC написал наш покупатель. Прочитать можете

Дополнение от ноября 2012 года.

Количество просмотров статьи с 2009 года составило более 12000. Кто бы мог подумать, что написанная под нас роение заметка будет столь полезна людям. Что изменилось с той поры? Во первых аккумуляторы фирмы GP серии Sub-C NI-Cd окончательно исчезли с рынка. Жаль, соотношение цена-качество было отличное.

Сегодня мы предлагаем аккумуляторы фирмы Energy Technology, хорошие по качеству и по невысокой цене.

Так же у нас есть возможность сваривать аккумуляторы контактной сваркой. Это качественно и правильно. Стоимость переборки аккумуляторов для шуруповерта не является фиксированной . Гарантия 6 месяцев. Подробнее ознакомиться с ценами можно по ссылке на любой странице сайта

По всем вопросам просьба обращаться на почту [email protected]

Купил новый шуруповерт и решил поглубже разобраться как правильно эксплуатировать его никель-кадмиевые аккумуляторы.
Цель - активная работа шуруповертом со сменой аккумуляторов (АкБ) без риска испортить аккумуляторы раньше времени.
Справка:
У данного шуруповерта:
- Аккумуляторная батарея - 12В.
- Количество элементов - 10.
- Ёмкость батареи - 1,2 Ачаса.
- ЭДС заряженной АкБ - 13,6В.
Особенности:
- Считается, что максимальная ЭДС полностью разряженной АкБ - 10В.
- Все Ni Cd аккумуляторы имеют эффект "памяти", т.е. если их не разряжать до конца, то они теряют свою емкость.
- У Ni Cd аккумуляторов большой саморазряд.
- Количество циклов заряд-разряд у любых аккумуляторов ограничено.
- Считается, что единственным критерием полного заряда Ni Cd аккумуляторов (при токах больших, чем 0,1С) является их температура, равная примерно 40*С.
Что я сделал:
1. Во-первых, изучил мат. часть (файл приложен).
2. Во-вторых, провел серию измерений.
3. В-третьих, проработал и сделал зарядно-разрядное устройство для сверхбыстрого заряда и автоматического отключения при номинальном разряде.
Итак, по пунктам:

1. Читайте теорию (файл).
2. Промерил зарядные токи и температуры АкБ при двух сильно разных токах и сопоставил их с "теорией".​

2А. "Быстрый" заряд большим начальным током (большим, чем 2,5 Ампера).
Полностью разряженную АкБ заряжал, взятым от старого ноутбука зарядным устройством с ЭДС 15 Вольт без дополнительных ограничителей тока/напряжения, т.е. - напрямую. Вообще-то, это называется "заряд постоянным напряжением".
Результат:
За первые 15 минут АкБ приняла 50% своей емкости, при этом зарядный ток снизился до 1,4А. Температура АкБ почти не изменилась.
Далее в течении следующих 45 минут ток асимптотически приблизился к 0,22А ( повысилась до 30*С). Затем почти 1 час ток оставался на уровне 0,22А (в конце - 34*С) и еще через 30 минут я отключил заряд при явно выраженном автоматическом выравнивании заряда элементов (в соотв. с "теорией") - при повышении тока до 0,35А и температуры до 38*С.
Вывод: полный заряд большим током можно производить за 2,5 часа. А до 50% - за 15 минут. О проблемах с недозарядом я нигде не читал. Проблемы только - с недораз рядом. Ну, и, конечно, - с переза рядом (а вернее - с перегревом из-за перезаряда).
2Б. Медленный заряд малым током (0,1С, т.е. - 120мА). Режим - близкий к "капельному".
Полностью разряженную АкБ заряжал, зарядным устройством от другого шуруповерта (менее мощным, чем штатное) без дополнительных ограничителей тока/напряжения, т.е. тоже напрямую.
За первые 15 минут зарядный ток упал с 310мА до 120мА и далее оставался более-менее стабильным, а температура за 15 часов заряда поднялась до 37*С.
При этом, температура в 36-37*С стабилизировалась уже после 10,5 часов заряда.
Вывод: Заряд током близким, но не более, чем 0,1С можно проводить без ограничения по времени, т.е. - не бояться перегрева/перезаряда АкБ. Грубо говоря - включил "на ночь" и потом как проснулся, почесался и отключил. Это полезно если у АкБ отсутствует отключающий термоэлемент.

3. Из зарядного блока от старого шуруповерта я сделал зарядно-разрядное устройство (ЗРУ).​

Ну, заряд там - напрямую от любого из двух описанных выше зарядных устройств, а разряд - через мощный резистор (24 Ома) со схемкой на реле. Реле - автоматически отключает разряд при достижении напряжения 9-10 Вольт.
Зачем принудительный разряд? Он нужен, чтобы емкость АкБ не снижалась, т.е., чтобы ликвидировать эффект "памяти" (см. "теорию" в файле). Т.е., когда пользователь считает, что АкБ надо менять, он вставляет полу разряженную АкБ в ЗРУ в режим разряда и, занимаясь свои делом, ждет, когда погаснет светодиод. После этого переводит тумблер в положение заряд и, при наличии у данной АкБ термоэлемента, отключающего заряд при повышении температуры до 40-45*С - "забывает" про него. Причем, использовать заряжаемую АкБ он может уже через 15 минут (при быстром заряде). Если термоэлемента нет, то для отключения можно использовать суточный электромеханический таймер .

Примечание 1. В принципе, можно разряжать АкБ и самим шуруповертом, но мне это не понравилось. Контроль уровня номинального разряда примерно такой: если уже еле вращающийся без нагрузки патрон остановить рукой и он после этого сам уже не начнет вращаться, то - разряд близок в номинальному.
Примечание 2. При любом реальном токе заряда об окончании заряда Ni Cd аккумуляторов можно и нужно судить по температуре АкБ - лучше около 40*С (при комнатной окружающей температуре!).
Примечание 3. На основе сказанного можно сделать рекомендации по хранению АкБ. Цель рекомендаций - максимальный ресурс АкБ.
Я бы выделил два разных режима эксплуатации шуруповерта:
- Редко. Одна батарея пусть лежит в том состоянии какое осталось после последней работы, а другую - хранить разряженной. При начале работы первой пользоваться (дораз рядить в процессе работы), а вторую в это время можно заряжать.
- Часто. Хранить одну - в заряженном состоянии, а другую - в любом, какое осталось после последней работы. Ну, а если - очень часто (каждый день), то можно и обе хранить в заряженном состоянии.
***
Понимаю, что не у всех есть ЗУ для быстрого заряда, как и для медленного (штатные обычно дают средний между ними ток). Однако, все-таки, их несложно сделать/найти. В любом случае надеюсь, что написанное здесь поможет кому-то немного разобраться с такими "своеобразными" Ni Cd аккумуляторами.