Как работает система охлаждения двигателя. Глава i

Система охлаждения - это совокупность устройств, обеспечивающих принудительный отвод теплоты от нагревающихся деталей двигателя.

Потребность в системах охлаждения для современных двигателей вызвана тем, что естественное рассеивание теплоты наружными поверхностями двигателя и теплоотвод в циркулирующее моторное масло не обеспечивают оптимального температурного режима работы двигателя и некоторых его систем. Перегрев двигателя связан с ухудшением процесса наполнения цилиндров свежим зарядом, пригоранием масла, увеличением потерь на трение и даже заклиниванием поршня. На бензиновых двигателях возникает также опасность калильного зажигания (не от искры свечи, а вследствие высокой температуры камеры сгорания).

Система охлаждения должна обеспечивать автоматическое поддержание оптимального теплового режима двигателя на всех скоростных и нагрузочных режимах его работы при температуре окружающего воздуха -45…+45 °С, быстрый прогрев двигателя до рабочей температуры, минимальный расход мощности на приведение в действие агрегатов системы, малую массу и небольшие габаритные размеры, эксплуатационную надежность, определяемую сроком службы, простотой и удобством обслуживания и ремонта.

На современных колесных и гусеничных машинах применяются воздушная и жидкостная системы охлаждения.

При использовании воздушной системы охлаждения (рис. а) теплота от головки и блока цилиндров передается непосредственно обдувающему их воздуху. Через воздушную рубашку, образов ванную кожухом 3, охлаждающий воздух прогоняется с помощью вентилятора 2, приводимого в действие от коленчатого вала с использованием ременной передачи. Для улучшения теплоотвода цилиндры 5 и их головки снабжены ребрами 4. Интенсивность охлаждения регулируется специальными воздушными заслонками 6, управляемыми автоматически с помощью воздушных термостатов.

Большинство современных двигателей имеет жидкостную систему охлаждения (рис. б). В систему входят рубашки охлаждения 11 и 13 соответственно головки и блока цилиндров, радиатор 18, верхний 8 и нижний 16 соединительные патрубки со шлангами 7 и 15, жидкостный насос 14, распределительная труба 72, термостат 9, расширительный (компенсационный) бачок 10 и вентилятор 77. В рубашке охлаждения, радиаторе и патрубках находится охлаждающая жидкость (вода или антифриз - незамерзающая жидкость).

Рис. Схемы воздушной (а) и жидкостной (б) систем охлаждения двигателя:
1 - ременная передача; 2, 17 - вентиляторы; 3 - кожух; 4 - ребра цилиндра; 5 - цилиндр; 6 - воздушная заслонка; 7, 15 - шланги; 8, 16 - верхний и нижний соединительные патрубки; 9 - термостат; 10 - расширительный бачок; 77, - рубашки охлаждения головки и блока цилиндров; 12 - распределительная труба; 14 - жидкостный насос; 18 - радиатор

При работе двигателя приводимый в действие от коленчатого вала жидкостный насос создает в системе циркуляцию охлаждающей жидкости. По распределительной трубе 12 жидкость направляется сначала к наиболее нагретым деталям (цилиндры, головка блока), охлаждает их и по патрубку 8 поступает в радиатор 18. В радиаторе поток жидкости разветвляется по трубкам на тонкие струйки и охлаждается воздухом, продуваемым через радиатор. Охлажденная жидкость из нижнего бачка радиатора по патрубку 16 и шлангу 15 снова поступает в жидкостный насос. Поток воздуха через радиатор обычно создает вентилятор 77, приводимый в действие от коленчатого вала или специального электродвигателя. На некоторых гусеничных машинах для,обеспечения потока воздуха применяется эжекционное устройство. Принцип действия этого устройства заключается в использовании энергии отработавших газов, вытекающих с большой скоростью из выпускной трубы и увлекающих за собой воздух.

Регулирует циркуляцию жидкости в радиаторе, поддерживая оптимальную температуру двигателя, термостат 9. Чем выше температура жидкости в рубашке, тем значительнее открыт клапан термостата и больше жидкости поступает в радиатор. При низкой температуре двигателя (например, непосредственно после его пуска) клапан термостата закрыт, и жидкость направляется не в радиатор (по большому кругу циркуляции), а сразу в приемную полость насоса (по малому кругу). Этим достигается быстрый прогрев двигателя после пуска. Интенсивность охлаждения регулируется также с помощью жалюзи, установленных на входе воздушного тракта или выходе из него. Чем больше степень закрытия жалюзи, тем меньше воздуха проходит через радиатор и хуже охлаждение жидкости.

В расширительном бачке 10, расположенном выше радиатора, имеется запас жидкости для компенсации ее убыли в контуре из-за испарения и утечек. В верхнюю полость расширительного бачка часто отводят образовавшийся в системе пар из верхнего коллектора радиатора и рубашки охлаждения.

Жидкостное охлаждение по сравнению с воздушным имеет следующие преимущества: более легкий пуск двигателя в условиях низкой температуры окружающего воздуха, более равномерное охлаждение двигателя, возможность применения блочных конструкций цилиндров, упрощение компоновки и возможность

изоляции воздушного тракта, меньший шум от двигателя и более низкие механические напряжения в его деталях. Вместе с тем жидкостная система охлаждения, имеет ряд недостатков, таких, как более сложная конструкция двигателя и системы, потребность в охлаждающей жидкости и более частой смене масла, опасность подтекания и замерзания жидкости, повышенный коррозионный износ, значительный расход топлива, более сложное обслуживание и ремонт, а также (в ряде случаев) повышенная чувствительность к изменению температуры окружающего воздуха.

Жидкостный насос 14 (см. рис. б) обеспечивает циркуляцию охлаждающей жидкости в системе. Обычно применяются центробежные крыльчатые насосы, но иногда используются шестеренные и поршневые насосы. Термостат 9 может быть одно- и двухклапанным с жидкостным термосиловым элементом или элементом, содержащим твердый наполнитель (церезин). В любом случае материал для термосилового элемента должен иметь очень большой коэффициент объемного расширения, чтобы при нагреве стержень клапана термостата мог перемещаться на довольно большое расстояние.

Практически, все двигатели наземных ТС с жидкостным охлаждением снабжены так называемыми закрытыми системами охлаждения, которые не имеют постоянной связи с атмосферой. При этом в системе образуется избыточное давление, что приводит к повышению температуры кипения жидкости (до 105… 110°С), увеличению эффективности охлаждения и уменьшению потерь, а также снижению вероятности появления в потоке жидкости пузырьков воздуха и пара.

Поддержание необходимого избыточного давления в системе и обеспечение доступа в нее атмосферного воздуха при разрежении осуществляется с помощью двойного паровоздушного клапана, который устанавливается в самой высокой точке жидкостной системы (обычно в крышке наливной горловины расширительного бачка или радиатора). Паровой клапан открывается, позволяя избытку пара уйти в атмосферу, если давление в системе превышает атмосферное на 20… 60 кПа. Воздушный клапан открывается, когда давление в системе снижается на 1… 4 кПа по сравнению с атмосферным (после остановки двигателя охлаждающая жидкость остывает, и ее объем уменьшается). Перепады давления, при которых открываются клапаны, обеспечиваются подбором параметров клапанных пружин.

В жидкостной вентиляционной системе охлаждения радиатор омывается потоком воздуха, создаваемым вентилятором. В зависимости от взаимного расположения радиатора и вентилятора могут применяться следующие типы вентиляторов: осевые, центробежные и комбинированные, создающие как осевой, так и радиальный потоки воздуха. Осевые вентиляторы устанавливают перед радиатором или за ним в специальном воздухоподводящем канале. К центробежному вентилятору воздух подводится по оси его вращения, а отводится - по радиусу (или наоборот). При нахождении радиатора перед вентилятором (в области всасывания) поток воздуха в радиаторе более равномерный, а температура воздуха не повышена из-за его перемешивания вентилятором. При нахождении радиатора за вентилятором (в области нагнетания) поток воздуха в радиаторе турбулентный, что повышает интенсивность охлаждения.

На тяжелых колесных и гусеничных ТС приведение вентилятора в действие обычно осуществляется от коленчатого вала двигателя. Могут использоваться карданные, ременные и зубчатые (цилиндрические и конические) передачи. В целях снижения динамических нагрузок на вентилятор в его приводе от коленчатого вала часто применяются разгружающие и демпфирующие устройства в виде торсионных валиков, резиновых, фрикционных и вязкостных муфт, а также гидромуфт. Для привода вентилятора относительно маломощных двигателей широко используются специальные электродвигатели, питание которых осуществляется от бортовой электросистемы. Это, как правило, уменьшает массу силовой установки и упрощает ее компоновку. Кроме того, применение электродвигателя для привода вентилятора позволяет регулировать частоту его вращения, а следовательно, и интенсивность охлаждения. При низкой температуре охлаждающей жидкости возможно автоматическое отключение вентилятора.

Радиаторы связывают друг с другом воздушный и жидкостный тракты системы охлаждения. Назначение радиаторов - передача теплоты от охлаждающей жидкости атмосферному воздуху. Основные части радиатора - входной и выходной коллекторы, а также сердцевина (охлаждающая решетка). Сердцевина изготавливается из меди, латуни или алюминиевых сплавов. По типу сердцевины различают следующие виды радиаторов: трубчатые, трубчато-пластинчатые, трубчато-ленточные, пластинчатые и сотовые.

В системах охлаждения колесных и гусеничных машин наибольшее распространение получили трубчато-пластинчатые и трубчато-ленточные радиаторы. Они жестки, прочны, технологичны в производстве и обладают высокой тепловой эффективностью. Трубки таких радиаторов имеют, как правило, плоскоовальное сечение. Трубчато-пластинчатые радиаторы могут также состоять из трубок круглого или овального сечения. Иногда трубки плоскоовального сечения располагают под углом 10… 15° к воздушному потоку, что способствует турбулизации (завихрению) воздуха и повышает теплоотдачу радиатора. Пластины (ленты) могут быть гладкими или гофрированными, с пирамидальными выступами или отогнутыми просечками. Гофрирование пластин, нанесение просечек и выступов увеличивают охлаждающую поверхность и обеспечивают турбулентное течение потока воздуха между трубками.

Рис. Решетки трубчато-пластинчатого (а) и трубчато-ленточного (б) радиаторов

Двигатель внутреннего сгорания (ДВС) каждого транспортного средства во время работы испытывает значительные нагрузки. Для обеспечения его корректной работы и сохранности отдельных механизмов и их деталей немаловажным моментом является достаточное охлаждение мотора.

Существуют два основных вида систем охлаждения ДВС: воздушное и жидкостное. Воздушный тип в современном автомобилестроении используется только в спортивных машинах, как дополнение к жидкостному, поскольку польза от одного только потока воздуха для обеспечения нормальной рабочей температуры агрегата ничтожно мала.

Первые транспортные средства автопроизводителя ЗАЗ были снабжены исключительно воздушным охлаждением. Несмотря на различные инженерные идеи, двигателя «Запорожцев» в жаркие летние дни часто перегревались.

Общая картина системы охлаждения

Независимо от того какой тип двигателя установлен в автомобиле и какая марка машины, система охлаждения имеет в целом схожее устройство. Обеспечение нормальной рабочей температуры силового агрегата достигается путём циркуляции охлаждающей жидкости по каналам системы. Таким образом, каждый узел ДВС охлаждается в равной степени независимо от температурной нагрузки.

Гидравлическая система охлаждения также может быть нескольких разновидностей:

  • Термосифонная - циркуляция осуществляется благодаря разнице в плотности горячей и холодной жидкости. Таким образом, охлаждённый антифриз вытесняет из силового агрегата горячую жидкость, отправляя её в каналы радиатора.
  • Принудительная - циркуляция охлаждающей жидкости происходит благодаря насосу.
  • Комбинированная - отвод тепла от большей части двигателя происходит принудительным путём, а отдельные участки охлаждаются термосифонным способом.

Принудительная система, пожалуй, наиболее эффективна и используется в большинстве современных легковых автомобилей.

Основные элементы

Система охлаждения двигателя содержит следующие элементы:

  • Рубашка охлаждения или «водяная рубашка». Представляет собой систему каналов проходящих в блоке цилиндров.
  • Радиатор охлаждения - устройство для охлаждения самой жидкости. Состоит из каналов изогнутых труб и металлических рёбер для лучшей теплоотдачи. Охлаждение происходит как благодаря встречному потоку воздуха, так и внутренним вентилятором.
  • Вентилятор. Элемент системы охлаждения, предназначенный для усиления потока воздуха. На современных автомобилях он включается только при срабатывании температурного датчика, когда радиатор неспособен полноценно охладить жидкость встречным потоком воздуха. В старых моделях автомобилей вентилятор работает постоянно. Вращение на него передаётся от коленчатого вала через ременной привод.
  • Насос или помпа. Обеспечивает циркуляцию охлаждающей жидкости по каналам системы. Приводится в действие с помощью ременного или шестерёнчатого привода от коленчатого вала. Как правило, мощные двигателя с прямым впрыском топлива комплектуются дополнительным насосом.
  • Термостат. Важнейшая деталь системы охлаждения, контролирующая циркуляцию по большому кругу охлаждения. Основной задачей является обеспечение нормального температурного режима при эксплуатации транспортного средства. Обычно установлен на стыке входного патрубка и рубашки охлаждения.
  • Расширительный бачок - ёмкость необходимая для сбора избытка охлаждающей жидкости возникающего в процессе её нагревания.
  • Радиатор отопления или печка. По своему устройству похож на радиатор охлаждения в меньшем размере. Однако, используется исключительно для обогрева салона автомобиля в зимний период и непосредственной роли в охлаждении ДВС не играет.

Круги циркуляции

Система охлаждения в автомобиле имеет два круга циркуляции: большой и малый. Основным считается именно малый, поскольку при запуске агрегата по нему сразу же начинает циркулировать охлаждающая жидкость. В работе малого круга задействованы только каналы блока цилиндров, помпа, а также радиатор отопления салона. Циркуляция проходит по малому кругу до тех пор, пока ДВС не достигнет нормальной рабочей температуры, после чего срабатывает термостат и открывает большой круг. Благодаря такой системе прогрев двигателя значительно сокращается, а в зимнюю пору система не столько охлаждает агрегат, сколько поддерживает его нормальный температурный режим.

В работе большого круга задействованы вентилятор, радиатор охлаждения, впускные и выпускные каналы, термостат, расширительный бочок, а также те элементы, которые принимают участие в функционировании малого круга. Внешний круг, он же большой круг, начинает работать, когда температура охлаждающей жидкости достигает 80-90 о С, и обеспечивает её охлаждение.

Принцип работы системы

В целом работа системы довольно проста. Приведённый в действие гидравлический насос обеспечивает циркуляцию охлаждающей жидкости по рубашке блока цилиндров. Скорость циркуляции зависит от количества оборотов коленчатого вала ДВС.

Антифриз, проходящий по каналам в блоке цилиндров, отводит излишек тепла от агрегата и поступает обратно в приёмный отсек помпы, минуя термостат. Когда температура охлаждающей жидкости достигает 80-90 о С, термостат открывает большой круг циркуляции, блокируя малый. Таким образом, жидкость после блока цилиндров направляется в радиатор охлаждения, где её температура снижается благодаря встречному потоку воздуха и вентилятору. Далее, процесс повторяется.

Возможные неполадки и их устранение

Несмотря на простоту конструкции, система охлаждения силового агрегата способна дать сбой во время эксплуатации транспортного средства. В связи с этим двигатель будет работать в повышенном температурном режиме, из-за чего ресурс его деталей значительно снизится. Причины некорректной работы охлаждения могут быть совершенно разные.

Износ термостата

Наиболее часто неполадки в системе связаны именно с клапаном переключающим круги циркуляции, он же термостат. Если деталь заклинивает в одном положении или клапан перекрывает каналы кругов циркуляции неплотно, прогрев двигателя может занять значительно больше времени или наоборот, агрегат начнёт сильно перегреваться без достаточного охлаждения.

Принцип работы термостата

Как правило, поломка термостата связана с нарушением его целостности. Основой клапана является термический воск, который при нагревании расширяется и сдавливает мембрану, открывающую большой круг циркуляции. Если воск по какой-либо причине вытек из детали, то клапан перестанет функционировать и антифриз не сможет полноценно охлаждаться. Также причиной износа может стать несвоевременная замена охлаждающей жидкости или её низкое качество. Коррозия пружины термостата вызывает заклинивание детали в открытом или реже закрытом положении. В обоих случаях двигатель не сможет работать в нормальном температурном диапазоне - жидкость будет либо постоянно охлаждаться, даже когда в этом нет необходимости, либо наоборот, всё время будет горячей.

Определить износ довольно просто и это можно сделать двумя способами. Проще всего проверку произвести несъёмным методом. Для этого сразу после запуска двигателя следует потрогать входной патрубок радиатора. Если он стал тёплым почти сразу после пуска ДВС, это говорит о том, что термостат заклинило в открытом положении. И наоборот, когда патрубок остаётся холодным, даже если показатель температуры находится в пиковом положении, это свидетельствует о неспособности термостата открываться.

Более точно удостовериться в том, что причина некорректной работы системы охлаждения заключается именно в неисправности термостата можно путём его демонтажа. Снятый клапан кладётся в ёмкость с водой и подвергается нагреву. Когда температура воды достигнет 90 о С, исправный клапан обязательно должен сработать - шток термостата сместится. Если этого не происходит, можно с уверенностью считать деталь неисправной.

Вышедший из строя термостат не подлежит ремонту, а требует обязательной замены. Его стоимость для большинства автомобилей редко превышает 1000 рублей. Клапан вполне можно заменить самостоятельно, без посещения автосервиса.

Неполадки гидравлического насоса

Одной из причин перегрева силового агрегата машины может стать неисправность помпы системы охлаждения. Чаще всего проблема заключается в том, что приводной ремень гидронасоса оборвался либо его натяг слишком слабый. В таком случае помпа перестанет качать антифриз, либо будет это делать не полноценно. Проверить это довольно просто, стоит лишь завезти двигатель и пронаблюдать за поведением приводного ремня. В случае если он работает с проскоками натяг следует увеличить или вовсе заменить ремень на новый. Наиболее часто это решает проблему.

Возникают ситуации, когда неполадка кроется в самой помпе: износ крыльчатки, подшипника, иногда возможна даже трещина вала. Кроме всего прочего, стыки соединения патрубков с помпой могут быть не герметичны, и создаваемое насосом давление спровоцирует протечку охлаждающей жидкости. Диагностировать протечку довольно просто, необходимо на полу под двигателем положить листы белой бумаги на несколько часов. Если на ней будут видны даже небольшие пятна голубого или зеленоватого цвета, это свидетельствует об износе прокладок помпы.

Проверить работоспособность самого насоса можно зажав пальцами верхний шланг радиатора на несколько секунд при работающем агрегате. Исправная помпа создаст сильное давление и после отпускания шланга появится ощущение, что жидкость быстро побежала по магистрали. Также стоит помнить о том, что повышенная шумность работы ДВС и люфт шкива помпы говорят об износе подшипника. Обычно его износ связан с просачиванием жидкости через сальник, которая смывает смазку с подшипника.

Насос охлаждающей жидкости в отличие от термостата можно заменить частично, но нередко автовладельцы предпочитают полноценно менять механизм.

Замена насоса:

  1. В первую очередь необходимо отключить массу автомобиля от аккумулятора, а поршень первого цилиндра должен находиться в верхней мёртвой точке. Произвести демонтаж ролика для натяга ремня и снять шкив распредвала.
  2. Далее, следует слить охлаждающую жидкость с нижней пробки в радиаторе.
  3. Открутив крепёжные болты помпы её нужно отсоединить от блока цилиндров.
  4. Оценив визуально снятый механизм важно определить его износ. Если крыльчатка, сальник и приводная шестерня имеют повреждения помпу лучше заменить полностью.
  5. Новый механизм должен устанавливаться с новой прокладкой, поскольку прежняя может иметь даже мелкие повреждения, которые впоследствии приведут к утечке охлаждающей жидкости. Помпа устанавливается таким образом, чтобы номер, указанный на корпусе, смотрел вверх.
  6. Дальнейшая сборка проводится в обратном порядки разборки. Охлаждающую жидкость лучше залить новую, но можно использовать и ту, которая была, если её ресурс ещё не исчерпан.

Проблемы с радиатором и вентилятором

Недостаточное охлаждение двигателя может быть связано с проблемами работы радиатора и вентилятора. В первую очередь стоит помнить, что слишком сильно забитый пылью и насекомыми радиатор неспособен полноценно охлаждаться как встречным потоком воздуха, так и вентилятором. Нередко его чистка решает проблему с охлаждением.

Устройство «классического» радиатора охлаждения двигателя. Во многих современных двигателях, охлаждающая жидкость заливается не через горловину радиатора, а в расширительный бачок

И всё же, возможны и более серьёзные ситуации - трещины радиатора, которые могут возникнуть, как при ДТП, так и в результате коррозии. Радиатор в большинстве случаев можно восстановить. Латунные и медные ремонтируются с помощью пайки, а алюминиевые специальными герметиками.

Перед началом пайки места повреждения тщательно зачищаются наждачной шкуркой, до появления металлического блеска. После, трещина обрабатывается паяльным флюсом и с помощью мощного паяльника наносится равномерный слой припоя (см. видео).

Алюминиевый радиатор запаять не получиться, однако для их ремонта предлагаются специальные герметики или же можно использовать обычную «холодную сварку». Перед началом заделывания трещин важно хорошо зачистить дефектные места. Клеящая масса хорошо разминается до однородного состояния и наносится на проблемный участок. Стоит помнить о том, что эксплуатировать автомобиль можно только на следующие сутки после ремонта – эпоксидный клей высыхает довольно долго.

Что касается вентилятора охлаждения, его поломка может быть связана с обрывом электропроводки или нарушением привода от коленчатого вала, если вращение передаётся от силового агрегата.

В первом случае, стоит визуально оценить состояние проводов идущих к мотору вентилятора, при обнаружении обрыва нужно заново соединить повреждённые контакты. Если состояние проводов нормальное, а вентилятор всё равно не работает, возможно, поломался сам двигатель или датчик, отвечающий за его своевременное включение. При этом лучше обратиться в автосервис, где определят причину, по которой вентилятор не включается. При проблемах с датчиком обдув может как беспрерывно, так и не включаться вовсе.

В автомобилях, где вентилятор начинает вращаться при передаче крутящего момента от двигателя, поломка чаще всего связана с обрывом приводного ремня. Его замена довольно проста: необходимо ослабить натяг шкива и поставить новый ремень.

Более подробно об устройстве и ремонте вентилятора охлаждения .

Промывка системы охлаждения и замена жидкости

Гидравлическая система охлаждения требует своевременного промывания магистралей, в противном случае на стенках каналов может образоваться коррозия, солевые отложения, и другие загрязнения.

Причины засорения

Основной причиной загрязнения системы является использование в качестве охлаждающей жидкости обычной воды. Проточная вода из крана имеет в составе большое количество солей, создаёт накипь и ржавчину на стенках магистралей. Использование дистиллированной воды менее пагубно, но полноценное охлаждение в жаркий период она не способна обеспечить. Кроме того, зимой при минусовой темпе вода замёрзнет и расширяясь может нарушить целостность отдельных деталей и соединений.

Применение качественного антифриза или тосола более целесообразно. Специальные вещества для охлаждения имеют значительный ресурс и не замерзают даже при очень низких температурах. Однако присадки содержащиеся в составе, с течением времени начинают выпадать в осадок засоряя систему.

Процесс промывки

В первую очередь, перед промывкой сливается вся охлаждающая жидкость через выпускную пробку на радиаторе, расположенную в самом низу, и на блоке цилиндров для удаления остатков.

Важно помнить, что слив жидкости должен проводиться только на холодном двигателе!

После слива пробки заново закручиваются и в расширительный бачок заливается вода с лимонной кислотой или лучше специальная очищающая жидкость.

Далее, двигатель запускается и работает в холостом режиме на протяжении 15 минут. При этом следует проследить за тем, чтобы открылся большой круг циркуляции. Также при промывке не стоит забывать о том, что салонная печка должна работать в режиме максимального обогрева. Когда агрегат остыл жидкость можно слить, открыв пробки радиатора и блока цилиндров. Этот процесс рекомендуется повторять до тех пор, пока при сливе не будет вытекать чистая жидкость без видимых загрязнений.

Залив новой охлаждающей жидкости можно проводить сразу же после окончания промывки. Наливать тосол или антифриз в расширительный бочок следует аккуратно и медленно во избежание образования воздушных пробок в системе.

Когда бачок заполниться почти полностью его нужно закрыть и запустить ДВС на несколько минут чтобы жидкость равномерно распространилась по системе. Далее, после отключения агрегата, тосол или антифриз доливаются до уровня между отметками максимума и минимума на бочке.

В заключение стоит сказать, что принципиальной разницы в использовании тосола или антифриза нет. Однако во многих странах мира автопроизводители давно перестали использовать тосол, поскольку его эффективность несколько ниже. Современный антифриз изготавливается с применением новейших технологий и в большей степени защищает двигатель от перегрева, а магистрали системы охлаждения от загрязнения.

Работа двигателя внутреннего сгорания (ДВС) приводит к чрезмерному нагреванию всех его деталей и без их охлаждения функционирование главного агрегата транспортного средства невозможно. Эту роль выполняет система охлаждения двигателя, которая также отвечает за обогревание салона авто. В турбированных двигателях с ее помощью снижается температура воздуха, нагоняемого в цилиндры, а в АКПП эта система охлаждает жидкость, которая применяется для ее работы. Отдельные модели машин оснащают масляным радиатором, который принимает участие в терморегуляции масла, использующегося для смазки двигателя.

Система охлаждения ДВС бывает воздушная и жидкостная

Обе эти системы не идеальны и имеют как достоинства, так и недостатки.

Преимущества воздушной системы охлаждения:

  • небольшой вес двигателя;
  • простота устройства и его обслуживания;
  • невысокая требовательность к температурным изменениям.

Недостатки воздушной системы охлаждения:

  • большой шум от работы двигателя;
  • перегрев отдельных деталей мотора;
  • невозможность выстроить цилиндры блоками;
  • затруднительность в использовании выделяемого тепла для обогревания салона авто.

В современных условиях автопроизводители предпочитают оснащать свои машины преимущественно двигателями с системами жидкостного охлаждения. Воздушные конструкции, охлаждающие узлы мотора, встречаются очень редко.

Преимущества жидкостной системы охлаждения:

  • не такой шумный двигатель по сравнению с воздушной системой;
  • высокая скорость начала работы при запуске мотора;
  • равномерное охлаждение всех деталей силового механизма;
  • меньшая предрасположенность к детонации.

Недостатки жидкостной системы охлаждения:

  • дорогое техническое обслуживание и ремонт;
  • возможное вытекание жидкости;
  • частые переохлаждения мотора;
  • замерзание системы в периоды морозов.

Структура жидкостной системы охлаждения двигателя

К основным составляющим жидкостной системы охлаждения ДВС относятся следующие детали:

  • «водяная рубашка» двигателя
  • вентилятор;
  • радиатор;
  • помпа (центробежный насос);
  • термостат;
  • бачок расширительный;
  • теплообменник отопителя;
  • составляющие элементы управления.

Водяная рубашка двигателя – это плоскость между стенками агрегата в тех местах, которым требуется охлаждение.

Радиатор системы охлаждения – это механизм, который предназначен для отдачи созданного работой двигателя тепла. Узел представляет собой конструкцию из многих изогнутых алюминиевых трубой, которые также имеют дополнительные ребра, способствующие большей теплоотдаче.

Вентилятор используется для ускорения циркуляции воздуха, обволакивающего радиатор. Вентилятор включается при граничном нагревании охлаждающей жидкости.

Центробежный насос (другими словами – помпа) обеспечивает беспрерывное движение жидкости во время работы двигателя. Привод для помпы может быть разным: ременной, например, или шестеренный. На авто с турбированными двигателями часто устанавливают добавочные насосы, которые способствуют циркуляции жидкости и запускаются из блока управления.

Термостат – это устройство в виде биметаллического (или электронного) клапана, расположенного между входным отверстием радиатора и «рубашкой охлаждения». Этот прибор обеспечивает нужную температуру жидкости, служащей для охлаждения ДВС. Когда мотор остывший, термостат закрыт, поэтому принудительная циркуляция остужающей жидкости проходит внутри двигателя, не затрагивая радиатор. В момент нагревания жидкости до граничной температуры клапан открывается. В этот момент система начинает функционировать во всю свою мощь.

Расширительный бачок используется для заливания охлаждающей жидкости. Этот узел компенсирует также изменение количества жидкости в системе во время изменения температуры.

Радиатор отопителя – механизм, предназначенный для подогрева воздуха в салоне транспортного средства. Его рабочая жидкость набирается непосредственно возле входа в «рубашку» мотора.

Главным элементом координации системы охлаждения ДВС есть датчик (температурный), электронный блок управления, а также исполнительные устройства.

Особенность работы системы охлаждения двигателя

Система охлаждения работает под контролем системы управления силовым агрегатом. Насос запускает циркуляцию жидкости в «рубашке охлаждения» двигателя. Учитывая степень нагрева, жидкость перемещается либо по малому, либо по большому кругу.


Чтобы двигатель быстрее прогрелся после запуска, жидкость циркулирует по кругу малому. После ее нагревания термостат открывается, предоставляя жидкости возможность циркулировать через радиатор, на выходе с которого на жидкость воздействует поток воздуха (встречного или от работающего вентилятора), который ее охлаждает.

В моторах с турбонаддувом может использоваться двухконтурная система охлаждения. Особенностью ее работы есть то, что один контур контролирует охлаждение нагнетаемого воздуха, а второй – охлаждение двигателя.

Во время движения многие механизмы мотора находятся в постоянном движении. Их трение настолько сильно, что температура начинает очень быстро повышаться. Но самый главный «виновник» высокой температуры горючая смесь, в результате сгорания которой температура повышается до 2000-2500 °С. При этом двигатель может быстро выйти из строя, т.к. для его нормальной работы самая оптимальная температура 80-90 °С . Для того чтобы сохранить работоспособность двигателя его нужно охлаждать. Для этого в моторе и существует система охлаждения.

Самым простым способом охлаждения двигателя, является встречный поток воздуха. Для автомобилей такая система практически не используется, но зато она широко применяется для охлаждения двигателей мотоциклов. Иногда встречный воздух охлаждает и двигатель машин. Среди известных нам марок эта система использовалась на .

Принцип действия воздушной системы охлаждения основан на том, что воздух подается на двигатель с помощью вентилятора. А охлаждением автоматически управляет термостат, с помощью которого можно поддерживать нужный температурный режим, не допуская ни охлаждения, ни перегрева. Для большинства автомобильных двигателей используется жидкостная система охлаждения. Принцип действия этой системы намного проще, чем охлаждение воздухом. Основан он на том, что тепло, исходящее от цилиндров, поглощается охлаждающей средой. В качестве регулятора температуры, т.е. охлаждающей среды, используется специальная жидкость. Нагреваясь от стенок цилиндра, она поступает в радиатор, охлаждается там и снова проходит к стенкам цилиндра, поглощая тепло. Таким образом, охлаждающая жидкость постоянно циркулирует, в действие эту систему приводит насос. Для охлаждения используется антифриз - смесь этиленгликоля и спирта. В качестве охлаждающей среды можно использовать и обычную воду, но в холода ее применение недопустимо, поскольку, замерзнув, она выведет из строя двигатель. Антифриз же не замерзает до минус 40 °С .

А теперь речь пойдет о том, как устроена система охлаждения. В это устройство входит рубашка охлаждения цилиндров, радиатор, насос, термостат, вентилятор и вентиляторный ремень, жалюзи, соединительные патрубки и шланги с хомутиками, а также указатель температуры воды. Все перечисленные детали очень важны и при поломке одного из них, может выйти из строя вся система охлаждения.

Если двигатель - это сердце машины, то водяной насос можно назвать сердцем системы охлаждения. Основная его функция - обеспечить циркуляцию жидкости. Вентилятор создает поток воздуха, который охлаждает жидкость. Чем больше скорость машины, тем сильнее работает вентилятор.

Что такое рубашка охлаждения вы уже знаете: образуют ее двойные стенки цилиндров, а в пространство между ними поступает охлаждающая жидкость. Радиатор состоит из верхнего и нижнего бачка, между которыми расположены трубки. В верхнем бачке находится горячая жидкость, которую и нужно охладить. Сразу большое количество воды остывает очень медленно. Но когда машина в пути ждать вам некогда, поэтому конструкторы изобрели такое устройство, чтобы вода в нем охлаждалась небольшими порциями.


Например, если чай в чашке очень горячий, то можно набрать его в чайную ложку и подуть. Работа радиатора основана на этом же принципе. Из верхнего бачка горячая жидкость тонкими струйками, которые хорошо обдуваются, поступает в нижний бачок. Там жидкость собирается уже охлажденная.

Горловина радиатора прочно закрыта пробкой. Но жидкость бывает такой горячей, что может даже закипеть. Для этих случаев предусмотрены клапаны, которые имеются на пробке. При возникновении избыточного давления через один клапан (выпускной) стравливается пар. Через другой клапан (впускной) в радиатор попадает воздух, когда давление в механизме ниже атмосферного. Если двигатель еще не остыл после долгой работы, то открывать пробку радиатора очень опасно, т.к. можно получить ожог горячим паром или водой.

Термостат регулирует работу системы охлаждения. Когда жидкость нагреется, то спирт, находящийся в гофрированном баллоне термостата, начнет испаряться, давление внутри баллона со спиртом повысится, и баллон, растягиваясь в высоту, откроет клапан термостата. Происходит это при температуре не ниже 80 °С. Как только температура поднимется до 90 °С, клапан откроется полностью и вода сможет циркулировать в системе свободно. Закроется клапан только тогда, когда температура понизится, это происходит, когда автомобилист снижает скорость машины или останавливается.

На дороге, даже если она очень хорошая и гладкая, машину все равно будет немного потряхивать. Поэтому положение двигателя по отношению к радиатору постоянно меняется, и на твердую опору ставить его нельзя. Допускается только резиновая опора. По той же причине не делают и жесткое соединение между двигателем и радиатором. А вот прорезиненные шланги и патрубки в самый раз. Они легкие и гибкие, поэтому овраги и кочки им не страшны.

Жалюзи необходимы для регулирования количества воздуха, который проходит через радиатор. Состоят они из ряда вертикально установленных пластинок, которые можно поворачивать с помощью рукоятки, находящейся в салоне автомобиля. Когда рукоятка находится в исходном положении, створки жалюзи открыты и воздух, не задерживаясь, свободно проходит к радиатору. Если выдвинуть рукоятку на себя, то створки жалюзи сомкнутся, и доступ воздуха к радиатору прекратится. Выдвинув рукоятку лишь наполовину, воздух хоть и не сильно, но будет поступать к радиатору. Жалюзи используются водителями нечасто и преимущественно в холодное время года, чтобы защитить радиатор от переохлаждения. При пуске двигателя в зимнее время жалюзи нужно закрыть, чтобы он быстрее прогрелся и не позволил замерзнуть воде в радиаторе.

Безусловно, работу системы охлаждения необходимо контролировать. Для этого на приборной панели имеется электрический указатель температуры воды. Он связан проводом с датчиком, помещенным в рубашку охлаждения. В дороге водителю нужно следить за показаниями этого прибора. Перегреваться двигатель не должен, т.к. это приводит к быстрому износу механизма. Чаще всего перегрев происходит из-за недостаточного количества охлаждающей жидкости или в результате нарушения в работе охлаждающей системы. Переохлаждение чаще всего возникает в зимнее время из-за неисправных жалюзи или отсутствия утеплительного чехла.

Перегрев и охлаждение значительно снижают мощность двигателя, поэтому необходимо регулярно проверять уровень охлаждающей жидкости в радиаторе, смотреть, не подтекает ли она.

Система охлаждения нуждается в регулярном осмотре , во время которого необходимо смазывать подшипники вентилятора и подтягивать его ремень и хомутики шлангов, если в этом есть необходимость. В том случае, если для охлаждения вы используете воду, то в холодную погоду, особенно при температуре ниже О °С, необходимо следить, чтобы вода в радиаторе не замерзла, иначе сам радиатор и цилиндр будут испорчены. Для защиты двигателя от мороза на облицовку радиатора надевают утеплительный чехол. 

Если вы хотите наглядно ознакомиться с системой охлаждения двигателя, то обязательно посмотрите это видео.


Еще статьи про ""

Заметили опечатку на сайте? Выделите ее и нажмите Ctrl + Enter

Как отмечалось ранее, существует два типа систем охлаждения двигателей - жидкостные и воздушные. Они отличаются тепловым контуром и теплоносителем, обеспечивающим отвод теплоты от наиболее нагреваемых деталей. Основные компоненты типов систем охлаждения представлены на рис. 1.7. В зависимости от типа системы охлаждения могут иметь разное конструктивное исполнение.

В системах жидкостного охлаждения теплоноситель циркулирует по контуру «рубашка охлаждения - радиатор». Жидкостный теплоноситель нагревается вследствие перепада температур между стенками цилиндров и теплоносителем. Нагретый теплоноситель

Рис. 1.7.

переносит теплоту к радиатору, где она частично рассеивается в окружающую среду потоком воздуха, проходящим через радиатор. Этот процесс является непрерывным вследствие постоянной циркуляции жидкости. Отвод теплоты осуществляется принудительно и регулируется.

Системы жидкостного охлаждения могут быть проточными, испарительными и замкнутыми.

Проточные системы охлаждения забирают охлаждающую жидкость (воду) из естественных водоемов, направляют в рубашку охлаждения двигателя и после нагрева выбрасывают в водоем (рис. 1.8). Эти системы просты по конструкции, их эффективность зависит от качества и температуры воды. Применяются они в стационарных, судовых и лодочных навесных двигателях.

Рис. 1.8.

В проточных системах охлаждения температура воды на выходе из двигателя составляет около 85 °С. Перепад температур воды, выходящей из двигателя и входящей в него, не превышает

15...20 °С. Принято, что при охлаждении жесткой пресной и морской водой температура па выходе из двигателя не должна превышать 55 °С во избежание интенсивного выделения накипи и солей на внутренних полостях охлаждающих систем. Этот недостаток в судовых двигателях частично устраняется за счет использования проточно-замкнутых систем охлаждения.

Проточно-замкнутая система охлаждения состоит из двух жидкостных контуров, один из которых замкнутый, использующий пресную нежесткую воду, другой - проточный, использующий воду из водоема (рис. 1.9). Вода замкнутого контура из рубашки охлаждения двигателя охлаждается в холодильнике, циркуляция воды осуществляется принудительно и обеспечивается водяным насосом. К холодильнику вторым насосом подается вода из водоема, которая охлаждает воду замкнутого контура. В замкнутом контуре охлаждения предусмотрен расширительный бачок для компенсации увеличения объема воды при нагревании, отвода из воды воздуха и компенсации утечек воды из системы.

Температура воды, выходящей из двигателя, в сообщающихся с атмосферой замкнутых системах не поднимается выше 85...90 °С. При оснащении расширительного бачка паровоздушным клапа-


Рис. 1.9. Схема комбинированной проточно-замкнутой системы охлаждения пом давление в системе превышает атмосферное и составляет 0,12...0,13 МПа, температура воды увеличивается до 105 °С.

Рис. 1.10.

Перепад температур воды па выходе из двигателя и входе после холодильника должен быть не более 10... 15°.

Испарительные системы охлаждения (рис. 1.10) обеспечивают отвод теплоты за счет испарения охлаждающей жидкости (воды), омывающей наиболее нагреваемые детали двигателя. Выделяющиеся пары конденсируются в холодильнике системы охлаждения. Циркуляция воды происходит за счет перемещения слоев жидкости при образовании и перемещении паровой фракции. Испарительные системы охлаждения отличаются простотой конструкции, требуют большого количества воды вследствие испарения. Используются испарительные системы преимущественно па стационарных небольшой мощности калоризаторпых двигателях с низкой степенью сжатия и воспламенением рабочей смеси от калильной (калоризаторной) головки.

Замкнутой системой охлаждения с естественной циркуляцией охлаждающей жидкости является тер моей фон пая система охлаждения (рис. 1.11). Циркуляция жидкости осуществляется вследствие напора, возникающего при разной плотности нагретой и охлажденной жидкости. Охлаждающая жидкость в полостях вокруг цилиндров и в головке при работе двигателя нагревается, поднимается вверх и поступает в верхний бак радиатора. В радиаторе жидкость под действием гравитационных сил опускается в нижний бачок. Потоком воздуха, который под воздействием вентилятора проходит через сердцевину радиатора, жидкость охлаждается. Из нижнего бачка радиатора охлажденная жидкость поступает в рубашку охлаждения двигателя, вытесняя нагретые слои жидкости в верхний бачок радиатора.

Термосифонпая система охлаждения обладает несложным устройством, менее эпергозатратна, но удовлетворительно работает


Рис. 1.11.

охлаждения

при большом объеме жидкости и значительной поверхности охлаждения радиатора. Перепад температур охлаждающей жидкости на выходе из двигателя и на входе после радиатора достигает 30 °С. На тракторах и автомобилях термосифонная система охлаждения вследствие больших габаритно-массовых параметров, нерегулируемое™ и большого перепада температур охлаждающей жидкости нс применяется.

Система охлаждения с принудительной циркуляцией жидкости (рис. 1.12) отличается от термосифонной тем, что после радиатора устанавливается насос. Жидкость из нижнего бачка под давлением нагнетается в нижнюю полость рубашки охлаждения, а затем проходит в верхнюю полость и головку

Циркуляция жидкости из нижней полости рубашки охлаждения в верхнюю является недостатком этой системы, так как в зону камеры сгорания и к поверхностям головки, имеющим наибольшую температуру, жидкость поступает уже нагретой. Такая циркуляция охлаждающей жидкости нс способствует эффективному протеканию рабочего процесса двигателя.

Система охлаждения с принудительной циркуляцией жидкости может выполняться как открытой, так и закрытой. Закрытая система разобщена с атмосферой и работает при избыточном давлении, вследствие чего температура кипения при заправке системы


Рис. 1.12.

жидкости

водой повышается до 105... 107 °С. Рабочая температура охлаждающей воды в закрытой системе составляет 98... 100 °С, а в открытой, сообщающейся с атмосферой, - 90...95 °С.

Комбинированная система охлаждения (рис. 1.13) отличается тем, что охлаждающая жидкость насосом подастся в верхнюю полость рубашки охлаждения. Водяной насос обеспечивает принудительную циркуляцию жидкости. В отводящем патрубке


Рис. 1.13.

устанавливается термостат, от полости установки термостата выполняется канал (патрубок), соединенный с всасывающей полостью водяного насоса. При прогреве двигателя термостат направляет жидкость, минуя радиатор, к насосу, чем обеспечивается интенсивный прогрев двигателя. После достижения рабочей температуры в системе охлаждения клапан термостата открывается и направляет жидкость через радиатор. В системе охлаждения поддерживается избыточное давление 0,045...0,05 МПа, вследствие чего температура кипения воды повышается до 107...110 °С, что снижает вероятность ее закипания при повышенных нагрузочных режимах.

Перепад температур жидкости на выходе из двигателя и после радиатора составляет 5...6 °С, что обеспечивает благоприятные условия для работы двигателя. Комбинированные закрытые системы с принудительной циркуляцией и автоматическим регулированием температуры жидкости экономичнее ранее рассмотренных и широко применяются на тракторах и автомобилях.

Воздушные системы охлаждения, в отличие от жидкостных, не имеют многообразия схем по принципу работы. Охлаждение двигателя осуществляется потоком воздуха, проходящим через оребренную поверхность цилиндра. Наружные поверхности блока двигателя воздушного охлаждения имеют кожуха, дефлекторы, которые образуют воздушный тракт. Поток воздуха в воздушном тракте направляется к наиболее нагретым деталям двигателя. Движение потока воздуха может осуществляться путем нагнетания или всасывания. Существенный недостаток второго способа в том, что оребренные поверхности интенсивно загрязняются и эффективность охлаждения уменьшается. Наибольшее применение получил способ нагнетания воздуха в воздушный тракт охлаждения двигателя. Конструкция схем воздушного охлаждения зависит от расположения и компоновки цилиндров .

Схема движения воздушного потока определяется компоновкой вентилятора, его приводом. Вентилятор приводится в движение непосредственно от коленчатого вала или ременной передачей. Для эффективного и равномерного охлаждения двигателя при наименьших затратах мощности воздух должен обдувать поверхности охлаждающих деталей равномерно и с достаточно высокой массовой скоростью. Поток воздуха первоначально должен охладить головку цилиндров, включая свечи зажигания и форсунки.


Рис. 1.14.

На рис. 1.14 представлены компоновочные схемы воздушного охлаждения двигателей с вертикальным рядным расположением цилиндров. Поток воздуха нагнетается в воздушный тракт, который формируется вдоль одной из боковых сторон ряда цилиндров двигателя.

Аэродинамическое сопротивление воздушного тракта зависит от места установки и привода вентилятора. При установке вентилятора на оси коленчатого вала траектория движения частиц воздуха удлиняется, поток воздуха совершает несколько поворотов, прежде чем поступить к оребренной поверхности цилиндров.

При V-образном расположении цилиндров (рис. 1.15) возможно применение одного или двух нагнетательных вентиляторов. Вентилятор может приводиться в движение непосредственно от коленчатого вала или устанавливаться так, чтобы направлять поток воздуха к каждому ряду цилиндров и иметь ременный привод. При оппозитном расположении цилиндров поток воздуха нагнетается в воздушный тракт и поступает на каждый ряд цилиндров (рис. 1.16).

Независимо от схемы компоновки цилиндров, установки и привода вентилятора принцип работы системы охлаждения неизменен. Основным недостатком воздушной системы охлаждения является неравномерность охлаждения и более высокий температурный режим двигателя. Температура внутренних поверхностей цилиндров и головки достигает 130... 140 °С. Температура в системах воздушного охлаждения поддерживается при помощи устройств, регулирующих расход потока воздуха путем движения его по межреберным каналам охлаждающих поверхностей, и другими способами. Воздушное охлаждение широко применяется на малогабаритных двигателях малой мощности, на двигателях большой мощности его использование ограничено.


Рис. 1.15.