Для чего служит рулевое управление. Рулевое управление: назначение и виды

Рулевое управление с гидроусилителем :
1 - рулевая сошка;
2 - продольная рулевая тяга;
3 - рулевой механизм;
4 - всасывающий шланг;
5 - сливной шланг;
6 - бачок;
7 - правая боковая рулевая тяга;
8 - правый маятниковый рычаг;
9 - поперечная рулевая тяга;
10 - входной вал рулевого механизма;
11 - нижний карданный шарнир;
12 - карданный вал;
13 - верхний карданный шарнир;
14 - вал рулевой колонки;
15 - рулевое колесо;
16 - левый маятниковый рычаг;
17, 21 - наконечники левой боковой тяги;
18 - хомут регулировочной трубки;
19 - левый рычаг рулевой трапеции;
20 - чехол шарнира;
22 - шарнир;
23 - нагнетательный шланг;
24 - насос гидроусилителя

Рулевое управление современных автомобилей с поворотными колесами включает в себя следующие элементы:
-рулевое колесо с рулевым валом (рулевой колонкой);
- рулевой механизм ;
- рулевой привод (может содержать усилитель и (или) амортизаторы).
Рулевое колесо находится в кабине водителя и расположено под таким углом к вертикали, который обеспечивает наиболее удобный охват его обода руками водителя. Чем больше диаметр рулевого колеса, тем при прочих равных условиях меньше усилия на ободе рулевого колеса, но при этом уменьшается возможность быстрого поворота руля при выполнении резких маневров. Диаметр рулевого колеса современных легковых автомобилей лежит впределах 380–425 мм, тяжелых грузовых и автобусов - 440–550 мм, наименьшие диаметры имеют рулевые колеса спортивныхавтомобилей.
Рулевой механизм представляет собой механический редуктор, его основная задача - увеличение приложенного к рулевому колесу усилия водителя, необходимого для поворота управляемых колес. Рулевые управления без рулевых механизмов, когда водитель непосредственно поворачивает управляемое колесо, сохранились лишь на очень легких транспортных средствах, например, на мотоциклах. Рулевой механизм имеет достаточно большое передаточное число, поэтому для поворота управляемых колес на максимальный угол 30–45°необходимо сделать несколько оборотов рулевого колеса.


Шарнирный рулевой вал грузового автомобиля

Рулевой вал соединяет рулевое колесо с рулевым механизмом и часто выполняется шарнирным, что позволяет более рационально компоновать элементы рулевого управления, а для грузовых автомобилей применять откидывающуюся кабину.
Кроме того, шарнирный рулевой вал повышает травмобезопасность рулевого колеса при авариях, уменьшая перемещение рулевого колеса внутрь салона и возможность травмирования грудной клетки водителя.


Рулевой вал со сминаемыми при ударе элементами :
1 - вал до удара;
2 - вал в процессе смятия;
3 - полностью «сложенный» вал;
4 - максимальный ход рулевого вала

С этой же целью в рулевой вал иногда встраивают сминаемые элементы, а рулевое колесо покрывают относительно мягким материалом, не дающим при разрушении острых осколков.

Рулевой привод представляет собой систему тяг и шарниров, связывающих рулевой механизм с управляемыми колесами. Поскольку рулевой механизм закреплен на несущей системе автомобиля, а управляемые колеса при движении перемещаются на подвеске вверх и вниз относительно несущей системы, рулевой привод обязан обеспечить необходимый угол поворота колес независимо от вертикальных перемещений подвески (согласованность кинематики рулевого привода и подвески). В связи с этим конструкция рулевого привода, а именно количество и расположение рулевых тяг и шарниров, зависит от типа применяемой подвески автомобиля. Наиболее сложным рулевой привод имеют автомобили с несколькими управляемыми мостами.
Для дополнительного уменьшения усилий, необходимых для поворота рулевого колеса, в рулевом приводе применяют усилители рулевого управления. Источником энергии для работы усилителя является, как правило, двигатель автомобиля. Первоначально усилители применялись лишь на тяжелых грузовых автомобилях и автобусах, в настоящее время используются и на легковых.
Для смягчения рывков и ударов, которые передаются на рулевое колесо при движении по неровной дороге, в рулевой привод иногда встраивают гасящие элементы - амортизаторы рулевого управления. Конструкция указанных амортизаторов принципиально не отличается от конструкции амортизаторов подвески.

Рулевое управление — одна из основных систем автомобиля, которая представляет собой совокупность узлов и механизмов, предназначенных для синхронизации положения рулевого колеса (руля) и угла поворота управляемых колес (в большинстве моделей автомобилей это передние колеса). Основное назначение рулевого управления для любых транспортных средств — это обеспечение поворота и поддержание заданного водителем направления движения.

Устройство системы рулевого управления

Схема рулевого управления

Конструктивно система рулевого управления состоит из следующих элементов:

  • Рулевое колесо (руль) — предназначено для управления водителем с целью указания направления движения автомобиля. В современных моделях оно дополнительно оснащается кнопками управления мультимедийной системой. Также в рулевое колесо встраивается передняя подушка безопасности водителя.
  • — выполняет передачу усилия от руля к рулевому механизму. Она представляет собой вал с шарнирными соединениями. Для обеспечения безопасности и защиты от угона колонка может быть оснащена электрическими или механическими системами складывания и блокировки. Дополнительно на рулевой колонке устанавливается замок зажигания, органы управления светотехникой и стеклоочистителем ветрового стекла автомобиля.
  • — выполняет преобразование усилия, создаваемого водителем через поворот рулевого колеса и передает его приводу колес. Конструктивно представляет собой редуктор с некоторым передаточным отношением. Сам механизм соединяет с рулевой колонкой карданный вал рулевого управления.
  • — состоит из рулевых тяг, наконечников и рычагов, выполняющих передачу усилия от рулевого механизма к поворотным кулакам ведущих колес.
  • Усилитель рулевого управления — повышает усилие, которое передается от руля к приводу.
  • Дополнительные элементы (амортизатор рулевого управления или «демпфер», электронные системы).

Стоит также отметить, что подвеска и рулевое управление автомобиля имеют тесную взаимосвязь. Жесткость и высота первой определяют степень отклика автомобиля на вращение рулевого колеса.

Виды рулевого управления

В зависимости от типа редуктора системы, рулевой механизм (система рулевого управления) может быть следующих видов:

  • Реечный — самый распространенный вид, используемый в легковых автомобилях. Этот вид рулевого механизма имеет простую конструкцию и отличается высоким КПД. Недостатки заключаются в том, что этот тип механизма чувствителен к возникающим ударным нагрузкам при эксплуатации в сложных дорожных условиях.
  • Червячный — обеспечивает хорошую маневренность автомобиля и достаточно большой угол поворота колес. Этот вид механизма меньше подвержен влиянию ударной нагрузки, но более дорогостоящий в изготовлении.
  • Винтовой — принцип работы похож на червячный механизм, однако он имеет более высокий КПД и позволяет создавать большие усилия.

В зависимости от вида усилителя, который предусматривает устройство рулевого управления, различают системы:

  • С . Его основным достоинством является компактность и простота конструкции. Гидравлическое рулевое управление среди современных транспортных средств является одним из наиболее распространенных. Недостатком такой системы является необходимость контроля уровня рабочей жидкости.
  • С . Такая система рулевого управления с усилителем считается наиболее прогрессивной. Он обеспечивает простоту регулировки настроек управления, высокую надежность работы, экономный расход топлива и возможность управления автомобилем без участия водителя.
  • С . Принцип действия данной системы аналогичен системе с гидравлическим усилителем. Главное отличие заключается в том, что насос усилителя приводится в действие электродвигателем, а не ДВС.

Рулевое управление современного автомобиля может быть дополнено следующими системами:

  • — система изменяет величину передаточного отношения в зависимости от текущей скорости. Она позволяет корректировать угол поворота колес и обеспечивает более безопасное и устойчивое движение на скользких поверхностях.
  • Динамического рулевого управления — работает аналогично активной системе, однако в конструкции в этом случае вместо планетарного редуктора используется электродвигатель.
  • Адаптивного рулевого управления для транспортных средств — главной особенностью является отсутствие жесткой связи между рулем автомобиля и его колесами.

Требования к рулевому управлению автомобиля

Согласно стандарту, к рулевому управлению применяются следующие основные требования:

  • Обеспечение заданной траектории движения с необходимыми параметрами поворотливости, поворачиваемости и устойчивости.
  • Усилие на рулевом колесе для осуществления маневра не должно превышать нормированного значения.
  • Суммарное число оборотов руля от среднего положения до каждого из крайних не должно превышать установленного значения.
  • При выходе из строя усилителя должна сохраняться возможность управления автомобилем.

Существует еще один стандартный параметр, определяющий нормальное функционирование рулевого управления — это суммарный люфт. Данный параметр представляет собой величину угла поворота руля до начала поворота управляемых колес.

Значение допустимого суммарного люфта в рулевом управлении должно быть в пределах:

  • 10° для легковых автомобилей и микроавтобусов;
  • 20° для автобусов и подобных транспортных средств;
  • 25° для грузовых автомобилей.

Особенности правостороннего и левостороннего руля

Левостороннее и правостороннее рулевое управление

В современных автомобилях может быть предусмотрено правостороннее или левостороннее рулевое управление, что зависит от вида транспортного средства и законодательства отдельных стран. В зависимости от этого руль может располагаться справа (при левостороннем движении) или слева (при правостороннем).

В большинстве стран левостороннее рулевое управление (или правостороннее движение). Основное отличие механизмов не только в позиции руля, но и в рулевом редукторе, который адаптирован под различные стороны подключения. С другой стороны, переоборудование правостороннего руля на левостороннее рулевое управление все же возможно.

В некоторых видах спецтехники, например, в тракторах, предусматривается гидрообъемное рулевое управление, которое обеспечивает независимость положения руля от компоновки других элементов. В этой системе отсутствует механическая связь привода и рулевого колеса. Для выполнения поворота колес гидрообъемное рулевое управление предусматривает силовой цилиндр, которым управляет насос-дозатор.

Основные достоинства, которые имеет гидрообъемное рулевое управление для транспортных средств в сравнении с классическим рулевым механизмом с гидравлическим усилителем: необходимость приложения меньших усилий для выполнения поворота, отсутствие люфта, а также возможность произвольного расположения узлов системы.

Лекция 14. Рулевое управление.

Назначение рулевого управления.

Рулевое управление обеспечивает необходимое направление движения автомобиля. Рулевое управление включает рулевой механизм, который осуществляет передачу усилия от водителя к рулевому приводу, и рулевой привод, который осуществляет передачу усилия от рулевого механизма к управляемым колесам. Каждое управляемое колесо установлено на поворотной цапфе (поворотном кулаке) 13 (рис. 1), соединенной с балкой 11 моста шкворнем 8 . Шкворень неподвижно закреплен в балке, и его верхний и нижний концы входят в проушины поворотной цапфы. При повороте цапфы за рычаг 7 она вместе с установленным на ней управляемым колесом поворачивается вокруг шкворня. Поворотные цапфы соединены между собой рычагами 9 и 12 и поперечной тягой 10 . Поэтому управляемые колеса поворачиваются одновременно.


Рис. 1. Схема рулевого управления

Поворот управляемых колес осуществляется при вращении водителем рулевого колеса 1 . От него вращение передается через вал 2 на червяк 3 , находящийся в зацеплении с сектором 4 . На валу сектора закреплена сошка 5 , поворачивающая через продольную тягу 6 и рычаг 7 поворотные цапфы 13 с управляемыми колесами.

Рулевое колесо 1 , вал 2 , червяк 3 и сектор 4 образуют рулевой механизм, увеличивающий момент, прикладываемый водителем к рулевому колесу для поворота управляемых колес. Сошка 5 , продольная тяга 6 , рычаги 7 , 9 и 12 поворотных цапф и поперечная тяга 10 составляют рулевой привод, передающий усилие от сошки к поворотным цапфам обоих управляемых колес. Поперечная тяга 10 , рычаги 9 и 12 , балка 11образуют рулевую трапецию, обеспечивающую необходимое соотношение между углами поворота управляемых колес.

Управляемые колеса поворачиваются на ограниченный угол, равный, как правило, 28 - 35º. Это сделано для того, чтобы колеса при повороте не касались рамы, крыльев и других деталей автомобиля.

На некоторых автомобилях в рулевом управлении используют усилитель, облегчающий поворот управляемых колес.

Стабилизация управляемых колес.

Силы, действующие на автомобиль, стремятся отклонить управляемые колеса от положения, соответствующего прямолинейному движению. Чтобы препятствовать повороту колес под действием случайных сил (толчков от наезда на неровности дороги, порывов ветра и т.п.), управляемые колеса должны сохранять положение, соответствующее прямолинейному движению, и возвращаться в него из любого другого положения. Эта способность называется стабилизацией управляемых колес. Стабилизация колес обеспечивается наклонами шкворня в поперечной и продольной плоскостях

и упругими свойствами пневматической шины.

Конструкция рулевых механизмов.

Червячно-роликовый рулевой механизм , показанный на рис. 2, выполнен в виде глобоидного червяка 5 и находящемся с ним в зацеплении трехгребневого ролика 8 . Червяк установлен в чугунном картере 4 на двух конических роликовых подшипниках 6 . Беговые дорожки для роликов обоих подшипников сделаны непосредственно на червяке. Наружное кольцо верхнего подшипника запрессовано в гнездо картера. Наружное кольцо нижнего подшипника, установленного в гнезде картера со скользящей посадкой, опирается на крышку 2 , привернутую к картеру болтами. Под фланцами крышки поставлены прокладки 3 различной толщины для регулирования предварительного натяга подшипников.

Червяк имеет шлицы, которыми он напрессован на вал. В месте выхода вала из картера установлен сальник. Верхняя часть вала, имеющая лыску, входит в отверстие фланца вилки карданного шарнира 7 , где закрепляется клином. Через карданный шарнир рулевая пара связана с рулевым колесом.

Вал 9 сошки установлен в картер через окно в боковой стенке и закрыт крышкой 14 . Опорой вала служат две втулки, запрессованные в картер и крышку. Трехгребневый ролик 8 размещен в пазу головки вала сошки на оси с помощью двух роликовых подшипников. С обеих сторон ролика на его ось поставлены стальные полированные шайбы. При перемещении вала сошки изменяется расстояние между осями ролика и червяка, чем обеспечивается возможность регулирования зазора в зацеплении.

Рис. 2. Рулевой механизм автомобиля КАЗ-608 «Колхида»

На конце вала 9 нарезаны конические шлицы, на которых гайкой закреплена рулевая сошка 1 . Выход вала из картера уплотнен сальником. На другом конце вала рулевой сошки имеется кольцевой паз, в который плотно входит упорная шайба 12 . Между шайбой и торцом крышки 14 находятся прокладки 13 , используемые для регулирования зацепления ролика с червяком. Упорную шайбу с комплектом регулировочных прокладок закрепляют на крышке картера гайкой 11 . Положение гайки фиксируют стопором 10 , привернутым к крышке болтами.

Зазор в зацеплении рулевой передачи переменный: минимальный при нахождении ролика в средней части червяка и увеличивающийся по мере поворота рулевого колеса в ту или другую сторону.

Такой характер изменения зазора в новой рулевой передаче обеспечивает возможность неоднократного восстановления необходимого зазора в средней, наиболее подверженной изнашиванию зоне червяка без опасности заедания на краях червяка. Подобные рулевые механизмы используются на автомобилях ГАЗ, ВАЗ с разницей в механизме регулировки зацепления червяка 5 с роликом 8 .

Реечный рулевой механизм (рис. 3, а ). При повороте рулевого колеса 1 шестерня 2 перемещает рейку 3 , от которой усилие передается на рулевые тяги 5 . Рулевые тяги за поворотные рычаги 4 поворачивают управляемые колеса. Реечный рулевой механизм состоит из косозубой шестерни 2 , нарезанной на валу 8 (рис. 3, б ) и косозубой рейки 3 . Вал вращается в картере 6 на упорных подшипниках 10 и 14 , натяг которых осуществляется кольцом 9 и верхней крышкой 7 . Упор 13 , прижатый пружиной 12 к рейке, воспринимает радиальные усилия, действующие на рейку, и передает их на боковую крышку 11 , чем достигается точность зацепления пары.

Рис. 3. Рулевое управление с реечным механизмом:

а – схема рулевого управления; б – реечный рулевой механизм

Винтореечный рулвой механизм (рис. 4) имеет две рабочие пары: винт 1 с гайкой 2 на циркулирующих шариках 4 и поршень-рейку 11 , входящую в зацепление с зубчатым сектором 10 вала сошки. Передаточное отношение рулевого механизма 20:1. Винт 1 рулевого механизма имеет шлифованную с большой точностью винтовую канавку «арочного» профиля. Такая же канавка выполнена в гайке 2 . Винтовой канал, образованный винтом и гайкой, заполнен шариками. Гайка жестко закреплена внутри поршня-рейки стопором.



Рис. 4. Рулевой механизм с встроенным гидроусилителем:

а – устройство; б – схема работы; 1 – винт; 2 – гайка; 3 – желоб; 4 – шарик; 5 – рулевой вал;

6 – корпус клапана управления; 7 – золотник; 8 – сошка; 9 – вал сошки; 10 – зубчатый сектор; 11 – поршень-рейка; 12 – картер-цилиндр; 13 – картер; А и Б – полости цилиндра;

В и Г – шланги входа и выхода масла; Д и Е – каналы.

При вращении винта 1 от рулевого колеса, шарики выходят с одной стороны гайки в желоб 3 и возвращаются по нему в канавки винта с другой стороны гайки.

Зубчатая рейка и зубчатый сектор имеют переменные по толщине зубья, что позволяет регулировать зазор в зацеплении рейка-сектор регулировочным винтом, ввернутым в боковую крышку картера рулевого механизма. На поршне-рейке установлены упругие разрезные чугунные кольца, обеспечивающие его плотную посадку в картере-цилиндре 12 . Вращение рулевого вала преобразуется в поступательное движение поршня-рейки благодаря перемещению гайки по винту. Зубья поршня-рейки в результате поворачивают сектор, а вместе с ним и вал 9 с сошкой 8 . Перед картером рулевого механизма в корпусе 6 установлен клапан управления с золотником 7 . С клапаном управления шлангами В и Г соединен насос гидроусилителя.

Во время движения автомобиля по прямой золотник находится в среднем положении (как показано на рис. 4), и масло из насоса по шлангу Г через клапан управления перекачивается обратно в бачок по шлангу В . При повороте рулевого колеса влево золотник 7 перемещается вперед (на рисунке влево) и открывает доступ масла в полость А по каналу Д , а из полости Б масло идет в полость В и в насос. В результате чего облегчается поворот колеса влево. Если водитель приостановит вращение рулевого колеса, то золотник клапана управления займет среднее положение, и угол, на который повернуты направляющие колеса, останется неизменным.

При повороте рулевого колеса вправо винт с золотником 7 перемещается назад (на рисунке вправо) в результате взаимодействия зубьев поршня-рейки и сектора. Перемещаясь назад, золотник открывает доступ маслу в полость Б через канал Е . В результате давления масла на поршень-рейку уменьшается усилие, которое затрачивается на поворот рулевого колеса. При этом рулевая сошка поворачивается против хода часовой стрелки.

Рулевой привод.

Рулевая трапеция (рис. 5). В зависимости от компоновочных возможностей рулевую трапецию располагают перед передней осью (передняя рулевая трапеция) или за ней (задняя рулевая трапеция). При зависимой подвеске колес применяют трапеции с цельной поперечной тягой; при независимой подвеске – только трапеции с расчлененной поперечной тягой, что необходимо для предотвращения самопроизвольного поворота управляемых колес при колебаниях автомобиля на подвеске. С этой целью шарниры разрезной поперечной тяги должны располагаться так, чтобы колебания автомобиля не вызывали их поворота относительно шкворней. Схемы различных рулевых трапеций показаны на рис. 9.



Рис. 5. Схемы рулевых трапеций

При зависимой и независимой подвесках могут применяться как задняя (рис. 9, а ), так и передняя (рис. 9, б ) трапеции.

На рис. 9, в е приведены задние трапеции независимых подвесок с разным числом шарниров.

Конструкция рулевых приводов при зависимой подвеске. При повороте колес детали рулевого привода перемещаются одна относительно другой. Такое перемещение происходит также при наезде колеса на неровности дороги и при колебаниях кузова относительно колес. Для создания возможности относительного перемещения деталей привода в горизонтальной и вертикальной плоскостях при одновременной надежной передаче усилий соединение осуществляют в большинстве случаев шаровыми шарнирами.

Продольную тягу 1 (рис. 6, а ) рулевого привода делают трубчатой с утолщениями по краям для монтажа деталей двух шарниров. Каждый шарнир состоит из пальца 3 , сухарей 4 и 7 , охватывающих сферическими поверхностями шаровую головку пальца, пружины 8 и ограничителя 9 . При затягивании пробки 5 головка пальца зажимается сухарями, а пружина 8 сжимается. Пружина шарнира не допускает образования зазоров в результате износов и смягчает толчки, передаваемые от колес на рулевой механизм. Ограничитель предотвращает чрезмерное сжатие пружины, а при ее поломках не позволяет пальцу выйти из соединения с тягой. Пружины располагают в тяге относительно пальцев 2 и 3 так, чтобы через пружины передавались усилия, действующие на тягу как от сошки 6 , так и от поворотного рычага.


Рис. 6. Рулевые тяги автомобиля ГАЗ:

а – продольная; б – поперечная

В поперечной продольной тяге шарниры размещают в наконечниках, навинченных на концы тяги. Резьба на концах тяги обычно имеет резное направление. Поэтому вращением тяги 10 (рис. 6, б ) при неподвижных наконечниках 11 можно изменять ее длину при регулировании схождении колес. Пальцы 15 жестко закрепляют в рычагах поворотных цапф. Шаровой поверхностью палец прижимается предварительно сжатой пружиной 12 через пятку 13 к сухарю 14 , установленному внутри наконечника тяги. Такое устройство шарнира позволяет непосредственно передавать усилия от пальца на тягу и в обратном направлении. Пружина 12 обеспечивает устранение в шарнире зазора, обусловленного износом. Таким образом, основное отличие шарниров поперечной тяги от шарниров продольной тяги состоит в том, что в первых не имеется пружин, через которые непосредственно передаются усилия в рулевом приводе.

Шарниры рулевых тяг смазывают через масленки. На некоторых автомобилях в шарниры смазочный материал закладывают при сборке, и пополнять ее в процессе эксплуатации не требуется.

Особенности рулевых приводов при независимой подвеске управляемых колес (рис. 7) . Рулевой привод при независимой подвеске должен исключать произвольный поворот каждого колеса в отдельности при его качании на подвеске. Для этого необходимо возможно близкое совпадение осей качания колеса и тяги привода, что достигается применением разрезной поперечной тяги. Такая тяга состоит из шарнирно соединенных частей, которые перемещаются с колесами независимо одна от другой.

Рис. 7. Схема рулевого привода при независимой подвеске:

1 – стойка; 2 – поворотные цапфы; 3 – рычаг поворотной цапфы; 4 и 9 – боковые тяги;

5 – маятниковый рычаг; 6 – сошка; 7 – рулевой механизм; 8 – средняя тяга.


Похожая информация.


Рис. 1

Рулевой механизм червячного типа состоит из:

Рулевого колеса с валом,

Картера червячной пары,

Пары «червяк-ролик»,

Рулевой сошки.

В картере рулевого механизма в постоянном зацеплении находится пара «червяк-ролик». Червяк есть не что иное, как нижний конец рулевого вала, а ролик, в свою очередь, находится на валу рулевой сошки. При вращении рулевого колеса ролик начинает перемещаться по винтовой нарезке червяка, что приводит к повороту вала рулевой сошки. Червячная пара, как и любое другое зубчатое соединение, требует смазки, и поэтому в картер рулевого механизма заливается масло, марка которого указана в инструкции к автомобилю. Результатом взаимодействия пары «червяк-ролик» является преобразование вращения рулевого колеса в поворот рулевой сошки в ту или другую сторону. А далее усилие передается на рулевой привод и от него уже на управляемые (передние) колеса.

Рулевой привод, применяемый с механизмом червячного типа, включает в себя:

Правую и левую боковые тяги,

Среднюю тягу,

Маятниковый рычаг,

Правый и левый поворотные рычаги колес.

Каждая рулевая тяга на своих концах имеет шарниры, для того чтобы подвижные детали рулевого привода могли свободно поворачиваться относительно друг друга и кузова в разных плоскостях.

К достоинствам механизма «червяк-ролик» относятся:

Низкая склонность к передаче ударов от дорожных неровностей

Большие углы поворота колес

Возможность передачи больших усилий

Недостатками являются:

Большое количество тяг и шарнирных сочленений с вечно накапливающимися люфтами

- «тяжелый» и малоинформативный руль

Сложности в технологии изготовления

Рулевой механизм типа “винт-гайка-сектор”

Рис. 2 Рулевой механизм типа "винт -- шариковая гайка -- рейка -- сектор"

1 -- распределитель;

3 -- шарики с трубкой рециркуляции;

4 -- поршень-рейка;

5 -- зубчатый сектор;

6 -- вал сошки;

7 -- ограничительный клапан

Полное название - "винт-шариковая гайка-рейка-сектор". Винт 2, которым оканчивается рулевой вал, через циркулирующие по резьбе шарики 3 толкает вдоль своей оси поршень-рейку 4. А тот в свою очередь поворачивает зубчатый сектор 5 рулевой сошки. Из-за возможности передавать большие моменты, устанавливается на грузовиках, пикапах и больших внедорожниках, работающих в экстремальных условиях.

Преимущества рулевого механизма “винт-шариковая гайка-рейка-сектор”:

Возможность конструкции с высоким передаточным числом

Недостатки рулевого механизма “винт-шариковая гайка-рейка-сектор”:

Нетехнологичен

Дорогой

Большие габариты

Тяжелый

Рулевой механизм реечного типа


В рулевом механизме «шестерня- рейка» усилие к колесам передается с помощью прямозубой или косозубой шестерни, установленной в подшипниках, и зубчатой рейки, перемещающейся в направляющих втулках. Для обеспечения беззазорного зацепления рейка прижимается к шестерне пружинами. Шестерня рулевого механизма соединяется валом с рулевым колесом, а рейка -- с двумя поперечными тягами, которые могут крепиться в середине или по концам рейки. Полный поворот управляемых колес из одного крайнего положения в другое осуществляется за 1,75...2,5 оборота рулевого колеса. Передаточные отношения механизма определяются отношением числа оборотов зубчатого колеса, равное числу оборотов рулевого колеса, к расстоянию перемещения рейки.

Реечный механизм рулевого управления состоит из картера, отлитого из алюминиевого сплава. В полости картера на шариковом и роликовом подшипниках установлено приводное зубчатое колесо. На картере и на пыльнике выполнены метки для правильной сборки механизма рулевого управления. Зубчатое колесо находится в зацеплении с зубчатой рейкой, которая поджимается к зубчатому колесу пружиной через металлокерамический упор. Пружина поджимается гайкой со стопорным кольцом, создавая сопротивление отворачиванию гайки. Подпружиненным упором облегчается беззазорное зацепление зубчатого колеса с зубчатой рейкой по всей величине хода. Рейка одним концом опирается на упор, а другим -- на разрезную пластмассовую втулку. Ход рейки ограничивается в одну сторону кольцом, напрессованным на рейку, а в другую сторону -- втулкой резино-металлического шарнира левой рулевой тяги. Полость картера механизма рулевого управления защищена от загрязнения гофрированным чехлом.

Вал рулевого управления соединяется с приводным зубчатым колесом эластичной муфтой. Верхняя часть вала опирается на шариковый радиальный подшипник, запрессованный в трубу кронштейна. На верхнем конце вала на шлицах через демпфирующий элемент крепится гайкой рулевое колесо.

Рулевой механизм с переменным отношением

Около нулевого положения рулевого колеса, когда едешь по прямой на высокой скорости, излишняя острота рулевого управления нежелательна, заставляет водителя напрягаться. А при парковке или развороте, наоборот, хотелось бы иметь передаточное отношение поменьше -- чтобы поворачивать руль на как можно меньший угол. Для этого существует несколько схем реечных рулевых механизмов.

Так работает реечный рулевой механизм ZF с переменным передаточным отношением. Здесь изменяются профиль зубьев рейки и плечо зацепления

Реечный рулевой механизм Honda VGR (Variable Gear Ratio -- переменное передаточное отношение) использовался на автомобилях Honda NSX

Фирма ZF использует зубья рейки с переменным профилем: в околонулевой зоне зубья треугольные, а ближе к краям -- трапецеидальной формы. Шестерня входит с ними в зацепление с разным плечом, что и помогает немного изменить передаточное отношение. А другой, более сложный, вариант использовала Honda на своем суперкаре NSX. Здесь зубья рейки и шестерни сделаны с переменными шагом, профилем и кривизной. Правда, шестерню приходится двигать вверх-вниз, но зато варьировать передаточное отношение можно в гораздо более широких пределах.

Рулевой привод состоит из двух горизонтальных тяг и поворотных рычагов телескопических стоек передней подвески. Тяги соединяются с поворотными рычагами при помощи шаровых шарниров. Поворотные рычаги приварены к стойкам передней подвески. Тяги передают усилие на поворотные рычаги телескопических стоек подвески колес и соответственно поворачивают их вправо или влево.

К преимуществам реечного рулевого механизма относится:

Малая масса

Компактность

Невысокая цена

Минимальное количество тяг и шарниров

Простота соединения рулевого механизма с управляемыми колесами

Прямая передача усилия

Высокая жесткость и КПД

Легкость в оснащении гидроусилителем

Недостатки:

Из-за простоты конструкции любой толчок от колес передается на руль

Трудности в изготовлении механизма с высоким передаточным числом, поэтому для тяжелых машин такой механизм не подходит.

Выбор и обоснование выбранной конструкции

По своим технологическим, ценовым, конструктивным качествам рулевой механизм «шестерня-рейка» наиболее подходит для переднеприводной компоновки и подвески McPherson, обеспечивая большую легкость и точность рулевого управления.

При проектировании автомобиля ВАЗ-2123, старались взять как можно больше узлов из модели ВАЗ-2121, поэтому на автомобиле ставили механизм типа “червяк-ролик”. Однако Chevrolet Niva не является мощным внедорожником, что бы на него целесообразно было ставить этот механизм. Он дороже, технологически сложен, тяжелее. Возможности, которые дает автомобилю червячный механизм, не используются в полной мере. При использовании рейкм, исключается концентрация напряжения от рулевого механизма на лонжероне, нет необходимости усиливать его в месте крепления механизма.

По всем этим причинам я считаю необходимым заменить механизм типа “червяк-ролик” на более дешевый, легкий, технологичный реечный механизм, который в необходимой мере обеспечивает легкость и точность рулевого управления.

В связи с тем, что будет заменен тип механизма, необходимо внести ряд изменений в конструкцию других узлов и агрегатов:

Так как за осью передних колес расположить реечный механизм не представляется возможным, то ставим его перед осью;

Для того чтобы освободить место между поддоном двигателя и дифференциалом для рейки, смещаем межколесный дифференциал на то же расстояние (20,5мм) назад, что не изменяет сбалансированность всего узла;

Так как рейка располагается перед осью, то тормозной суппорт колеса необходимо расположить сзади.

Знаете, как называется рулевое колесо у гоночного болида? Штурвал! А в наших автомобилях всего то – руль.… Чувствуете разницу? Но оставим Шумахеру шумахерово, и поговорим что же такое рулевое управление , или рулевой механизм .

Система рулевого управления служит для управления автомобилем и обеспечения его движения в заданном направлении по команде водителя. Система включает в себя рулевой механизм и ру­левой привод . Что бы представить себе работу рулевых механизмов разных поколений, мы разделим объяснение на три части, именно столько их насчитывается в автомобилестроении.

Червячный рулевой механизм

Свое название получил из-за системы привода рулевой колонки, а именно червячной шестерни. В состав рулевой системы входят:

  • руль (думается объяснять не надо?)
  • рулевой вал с крестовиной , представляет собой металлический стержень, у которого с одной стороны расположены шлицы для фиксации руля, а с другой внутренние шлицы для крепления к рулевой колонке. Полная фиксация производится стяжной муфтой, которая обжимает место стыка вала и «червяка» привода колонки. В месте изгиба вала устанавливается , при помощи которого передается боковое усилие вращения.
  • рулевая колонка , устройство, собранное в одном литом корпусе, в состав которой входят червячная ведущая шестерня и ведомая. Ведомая шестерня соединена жестко с рулевой сошкой.
  • рулевые тяги , наконечники и «маятник», совокупность этих деталей соединённых между собой при помощи шаровых и резьбовых соединений.

Работа рулевого механизма выглядит следующим образом: при вращении рулевого колеса, усилие вращения передается на червячный механизм колонки, «червяк» вращает ведомую шестерню, которая в свою очередь приводит в действие рулевую сошку. Сошка соединена со средней рулевой тягой, второй конец тяги крепится к маятниковому рычагу. Рычаг устанавливается на опоре и жестко крепится к кузову автомобиля. От сошки и «маятника» отходят боковые тяги, которые при помощи обжимных муфт соединены с рулевыми наконечниками. Наконечники соединяются со ступицей. Рулевая сошка, поворачиваясь, передает усилие одновременно на боковую тягу и на средний рычаг. Средний рычаг приводит в действие вторую боковую тягу и ступицы поворачиваются, соответственно колеса тоже.

Такая система была распространена на старых моделях «Жигулей» и «BMW».

Реечный рулевой механизм

Самая распространенная система в настоящее время. Основные узлы это:

  • рулевое колесо (руль)
  • рулевой вал (то же что и в червячном механизме)
  • рулевая рейка – это узел, состоящий из зубчатой рейки, в движение которую приводит рулевая шестерня. Собранная в одном корпусе, чаще из легкого сплава, крепится непосредственно к кузову авто. На концах зубчатой рейки изготовлены резьбовые отверстия для крепления рулевых тяг.
  • рулевые тяги представляют собой металлический стержень, с одного конца у которого резьба, а со второй, шарнирное шаровое устройство с резьбой.
  • рулевой наконечник , это корпус с шаровым шарниром и внутренней резьбой, для вкручивания рулевой тяги.

При вращении рулевого колеса, усилие передается на шестерню, которая приводит в действие рулевую рейку. Рейка «выезжает» из корпуса влево или вправо. Усилие передается на рулевой рычаг с наконечником. Наконечник вставлен в ступицу, которую и поворачивает в дальнейшем.

Для уменьшения усилия водителя при вращении рулевого колеса, в реечное рулевое устройство были введены усилители руля , на них остановимся более подробно

Усилитель руля является вспомогательным устройством для вращения рулевого колеса. Различают несколько типов усилителей руля. Это гидроусилитель, гидроэлектроусилитель, электроусилитель и пневмоусилитель .

  1. Гидроусилитель состоит из гидравлического насоса, в действие который приводит , системы шлангов высокого давления, и бачка для жидкости. Корпус рейки выполнен герметически, так как в нем находится жидкость гидроусилителя. Принцип действия гидроусилителя следующий: насос нагнетает давление в системе, но если руль стоит на месте, то насос просто создает циркуляцию жидкости. Стоит только водителю начать поворачивать руль, как перекрывается циркуляция, и жидкость начинает давить на рейку, «помогая» водителю. Давление направлено в ту сторону, в которую вращается «баранка».
  2. В гидроэлектроусилителе система точно такая же, только насос вращает электромотор.
  3. В электроусилителе применяется так же электромотор, но соединяется он непосредственно с рейкой или с рулевым валом. Управляется электронным блоком управления. Электроусилитель еще называют адаптивным усилителем из-за возможности прикладывания разного усилия к вращению рулевого колеса, в зависимости от скорости движения. Известная система Servotronic.
  4. Пневмоусилитель это близкая «родня» гидроусилителя, только жидкость заменена на сжатый воздух.

Активная рулевая система

Самая «продвинутая» в настоящее время, в состав входит:

  • рулевая рейка с и электродвигателем
  • блок электронного управления
  • рулевые тяги, наконечники
  • рулевое колесо (ну а как же без него?)

Принцип работы рулевой системы чем-то напоминает . При вращении рулевого колеса, вращается планетарный механизм, который и приводит в действие рейку, но вот только передаточное число всегда разное, в зависимости от скорости движения автомобиля. Дело в том, что солнечную шестерню снаружи вращает электродвигатель, поэтому в зависимости от скорости вращения изменяется передаточное число. На небольшой скорости коэффициент передачи составляет единицу. Но при большем разгоне, когда малейшее движение руля может привести к негативным последствиям, включается электромотор, вращает солнечную шестерню, соответственно необходимо руль довернуть больше при повороте. На маленькой скорости автомобиля электродвигатель вращается в обратную сторону, создавая более комфортное управление.

Весь остальной процесс выглядит, как и у простой реечной системы.

Ничего не забыли? Забыли, конечно! Забыли еще одну систему – винтовую . Правда, эта система больше похожа на червячный механизм. Итак – на валу проточена винтовая резьба, по которой «ползает» своеобразная гайка, представляет собой зубчатую рейку с резьбой внутри. Зубья рейки приводят в действие рулевой сектор, в свою очередь он предает движение сошке, ну а дальше как в червячной системе. Для уменьшения трения, внутри «гайки» расположены шарики, которые «циркулируют» во время вращения.