Автомобильные турбокомпрессоры: Все самые важные факты. Как работает турбонаддув

Турбокомпрессор является решением, которое устанавливается как на бензиновый, так и практический на каждый современный дизельный двигатель автомобиля. в обиходе называются турбодизелями. Указанный компрессор представляет собой своеобразный насос для воздуха, который приводится в действие турбиной. Турбину дизельного двигателя вращает энергия выхлопных газов.

Главной задачей устройства является нагнетание воздуха в цилиндры дизельного под давлением. Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь. Результатом становится значительное увеличение мощности двигателя без необходимости физически увеличивать объем цилиндров.

Читайте в этой статье

Принцип работы и конструкция дизельного турбонагнетателя

Турбокомпрессор дизельного двигателя состоит из двух колес: турбинного и компрессорного. Данные колеса еще могут называться крыльчаткой. Крыльчатка турбины напрямую и жестко соединена с компрессорным колесом посредством оси. Устройство нагнетателя можно разделить на главные составные части:

  • корпус компрессора (1);
  • компрессорное колесо (2);
  • вал ротора или ось (3);
  • корпус турбины (4),
  • турбинное колесо(5);
  • корпус подшипников;

Турбина имеет в основе ротор (крыльчатку), который закреплен на оси и заключен в специальный корпус. Постоянный контакт всех элементов турбины с раскаленными газами обуславливает необходимость изготовления ротора и корпуса турбины из особых жаропрочных материалов.

Крыльчатка и ось вращаются в противоположных направлениях с высокой частотой, в результате чего осуществляется плотный прижим одного элемента к другому. Поток отработавших газов проникает в выпускной коллектор, после чего оказывается в специальном канале. Данный канал находится в корпусе турбонагнетателя. Корпус имеет своеобразную форму-улитку. После прохождения улитки, отработавшие газы разгоняются и подаются на ротор. Так осуществляется вращение турбины.

Конструкция устройства может отличаться на разных типах дизельных двигателей. Главным отличием выступает разное количество каналов для движения выхлопных газов в корпусе. Также могут дополнительно присутствовать решения, которые позволяют управлять потоком отработавших газов внутри корпуса (турбина с изменяемой геометрией) и т.п.

Устройство компрессора

Компрессор имеет корпус и колесо (ротор). Корпус компрессора алюминиевый. Ротор крепится на оси турбины аналогично крыльчатке. Колесо компрессора имеет лопасти, материалом изготовления которых также является алюминий. Задачей компрессорного колеса становится забор воздуха, который проходит через его центр.

Форма лопастей заставляет воздух отбрасываться к стенкам корпуса компрессора, благодаря чему происходит его сжатие. Далее поток сжатого воздуха подается во впускной коллектор двигателя.

Ось турбокомпрессора

Ось является центральной частью турбонагнетателя и закреплена внутри корпуса на подшипниках скольжения. Смазка оси реализована при помощи подачи . С обеих сторон устанавливаются специальные уплотнительные кольца и прокладки.

Данные элементы препятствуют обильным утечкам масла, чтобы смазка не попадала в область нахождения компрессора и турбины. Сами масляные уплотнения не обеспечивают полной герметичности. Данные решения являются уплотнителями, которые функционируют благодаря разнице давлений, которые возникают в процессе работы турбокомпрессора.

Также уплотнения минимизируют прорыв воздуха из компрессора и газов из турбины в корпус оси. Стоит отметить, что полностью исключить попадание выхлопа и сжатого компрессором воздуха не удается. Излишки удаляются по сливному маслопроводу вместе с маслом и оказываются в картере дизельного двигателя.

Турбояма и турбоподхват

Крыльчатка турбины и компрессорное колесо закреплены на одной общей оси. По этой причине наблюдается определенная зависимость, которая заключается в увеличении подачи воздуха компрессором только с ростом оборотов турбины. Специалисты выделяют понятие турбоямы (турболаг), что означает задержку прироста мощности дизеля при резком нажатии на акселератор.

Турбояма возникает в результате инерционности всей системы турбонаддува. Дело в том, что для раскручивания турбинного колеса поступающими на крыльчатку выхлопными газами нужно определенное время. Турбоподхват является резким увеличением оборотов ДВС, который возникает следом за турбоямой.

Крыльчатка турбины раскручивается выхлопными газами для создания эффективного давление наддува турбокомпрессором. При определенных условиях турбина может вращаться с очень большой частотой, что зависит от конструктивных особенностей корпуса устройства и интенсивности потока отработавших газов.

Читайте также

Самостоятельная проверка турбокомпрессора дизельного двигателя. Проверка нагнетателя без снятия. Наличие масла в корпусе турбины, люфт вала, крыльчатка.

  • Когда и почему возникает необходимость настроить актуатор турбокомпрессора. Принцип работы устройства, особенности и доступные способы настройки вестгейта.


  • Зачем автомобилю турбина и каковы ее преимущества? Где находится турбина

    Где Находится Турбина В Машине ~ VIVAUTO.RU

    Где находится турбина в машине

    Последние доставленные авто

    Главные механизмы работы турбо мотора.

    Как понятно, мощность мотора пропорциональна количеству топливо-воздушной консистенции попадающей в цилиндры. При иных равных, движок большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем движок наименьшего объема.

    Если нам требуется что бы небольшой движок выдавал мощности как большой либо мы просто желаем что бы большой выдавал еще более мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого мотора.

    Естественно, мы можем доработать головку блока и установить спортивные распредвалы, увеличив продувку и количество воздуха в цилиндрах на больших оборотах. Масло в КПП Лада Гранта поэтому лучше поменять, Где находится щуп масла в коробке. - Из турбокомпрессора воздух поступает в интеркулер (3) где находится турбина еще. Где находится турбина в машине. Добрый вечер!!! Подскажите пожалуйста где находится датчик коленвала в Пежо 308 ,2009 год выпуска дизель!? Мы даже можем бросить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высочайший октан горючего, тем подняв КПД системы. Убьёшь турбину*crazy* Не мешай машине ездить, у меня турбина в Там где в нее. Все эти методы результативны и работают в случае когда требуемое повышение мощности составляет 10-20%. Где находится кран отопителя? Перед тем, как поменять кран отопительной системы, давайте разберемся в том, где находится этот элемент и зачем он нужен. Где находится фильтр? Решив своими руками заменить грязный топливный фильтр в машине. Но когда нам необходимо кардинально поменять мощность мотора - самым действенным способом будет внедрение турбокомпрессора.

    Каким же образом турбокомпрессор дозволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взглянем на приведенную ниже диаграмму:

    Что такое турбина (Простыми словами)

    Вконтакте: YouTube: Instagram: Би-Ноль: .

    Как работает турбина на автомобиле 2014

    Как работает турбина на авто turbina-na-avto/ подробнее читайте тут!

    Снутри турбокомпрессора вошедший воздух сжимается и при всем этом возрастает количество кислорода в единице объема воздуха. Где находится турбина в машине. Преимущества и недостатки турбокомпрессоров. Для тех, кто не знает, где находится турбина в машине, нужно понимать, что она встроена в двигатель. Где находится кран печки в ZAZ Chance 2010 года. Побочным эффектом хоть какого процесса сжатия воздуха является его нагрев, что несколько понижает его плотность.

    Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что не считая роста плотности воздуха ведет к тому же к наименьшей склонности к детонации нашей будущей топливо-воздушной консистенции.

    После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и далее на такте впуска - в цилиндры нашего мотора.

    Объем цилиндра является фиксированной величиной, обусловленной его поперечником и ходом поршня, но потому что сейчас он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится существенно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет спалить большее количество горючего за такт, а сгорание большего количества горючего ведет к повышению мощности выдаваемой движком.

    После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток жаркого (температура 700С-1100С) газа попадает в турбину (6)

    Проходя через турбину поток выхлопных газов крутит вал турбины на другой стороне которого находится компрессор и тем совершает работу по сжатию очередной порции воздуха. Может быть турбина и в порядке, У меня пробег на машине свыше 200 000 И где это на. При всем этом происходит падение давления и температуры выхлопного газа, так как часть его энергии ушла на обеспечение работу компрессора через вал турбины.

    Если машина не набирает мощность, как она должна то стоит задуматься чтоб проверить работу турбины на Вашем автомобиле.

    Источник

    vivauto.ru

    Как работает турбина в автомобиле

    Основные принципы работы турбо двигателя.

    Как известно, мощность двигателя пропорциональна количеству топливо-воздушной смеси попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема.

    Если нам требуется что бы маленький двигатель выдавал мощности как большой или мы просто хотим что бы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя.

    Естественно, мы можем доработать головку блока и установить спортивные распредвалы, увеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора - самым эффективным методом будет использование турбокомпрессора.

    Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взглянем на приведенную ниже диаграмму:

    Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором.

    Воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)

    Внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.

    Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха ведет еще и к меньшей склонности к детонации нашей будущей топливо-воздушной смеси.

    После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и дальше на такте впуска - в цилиндры нашего двигателя.

    Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.

    После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток горячего (температура 700С-1100С) газа попадает в турбину (6)

    Проходя через турбину поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор и тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работу компрессора через вал турбины.

    Если машина не набирает мощность, как она должна то стоит задуматься чтобы проверить работу турбины на Вашем автомобиле.

    remontauto.by

    Что такое турбина и как она работает?: МашиноМания

    Примите во внимание два фактора. Во-первых, турбина может вращаться со скоростью 200 000 оборот за минуту. Во-вторых, температура газа может достигнуть 1000 градусов. Это означает, что очень непросто создать такой трубнаддув, который будет в состоянии вынести подобные нагрузки.

    Именно из-за этого турбонаддувом широко пользовались лишь во время Второй мировой - и то в основном в авиации. Лишь в 50-ых годах компания Caterpillar приспособила этот инструмент для тракторов, а Cummins удалось сконструировать первые грузовые турбодизели. В легковых автомобилях их стали использовать несколько позже, в 1962 году. Недостатки конструкции не ограничены ее сложностью и дороговизной. То, насколько эффективно работает турбина, напрямую зависит от того, как оборачивается двигатель. Для малых оборотов характерно малое количество выхлопных газов, из-за чего компрессор практически не нагоняет дополнительного воздуха. Это приводит к тому, что он практически бездействует на мощностях до 3 тысяч оборотов, а после 4-5 - выстреливает. Такая ситуация называется турбоямой. Характерно то, что чем большего размера турбина, тем больше времени уйдет на раскрутку. Из-за этого двигатель с турбиной высокого давления будет существенно страдать в этой ситуации. Турбины с давлением пониже такой проблемой не страдают, но и мощности практически не поднимают. Решить проблему турбоямы можно при помощи последовательного наддува, при котором во время работы на малых оборотах запускают малоинерционные турбокомпрессоры, которые увеличивают тягу сначала. Вторые включаются со временем, когда давление на выпуске растёт. Рядные двигатели часто используют одиночные турбокомпрессоры в паре. При этом, каждую улитку наполняют выхлопные газы из разных цилиндров. Однако газы подаются на одну турбину, что позволяет эффективно раскручивать ее не только на больших, но и на малых оборотах. Впрочем, чаще всего по-прежнему используют пару одинаковых компрессоров, которые обслуживают разные группы цилиндров, что является типичной схемой для V-моторов. Так становится возможным получать выхлопной газ из блоков, которые работают в противофазе. Чтобы компрессор работал более эффективно на всех оборотах, необходимо изменить геометрию рабочих частей. Лопатки поворачиваются, как и изменяется форма сопла, в зависимости от того, каковы обороты. Таким образом, можно получить супертурбину, которая сможет работать во всём диапазоне. Несмотря на то, что эти идеи уже довольно давно витают в воздухе, их удалось воплотить в жизнь лишь недавно. Первым автомобилем, который реализовал ее, стал Porsche 911 Turbo.


    Изменяемая геометрия турбины

    Конструкция уже давным-давно усовершенствована, а ее популярность продолжает возрастать. Турбокомпрессоры стали эффективными не только с точки зрения форсирования мотора, а и для экономичности двигателя. Очень многие дизели сейчас снабжены приставкой "турбо", а это означает, что даже самый обычный, на первый взгляд, автомобиль, может оказаться настоящей "зажигалкой". Распознать её можно благодаря тому самому неприметному значку.

    Источник: automenu.com.ua

    www.mashinomania.ru

    Зачем автомобилю турбина и каковы ее преимущества?

    Для чего и в каких случаях требуется турбина?

    На мощностные характеристики, которые демонстрирует автомобиль, непосредственно влияет показатель наполнения цилиндров воздушно-топливной смеси. В целях увеличения степени обогащения этой смеси компании-производители оборудуют транспортные средства турбокомпрессорами. Вместе с тем, далеко не каждая модель и модификация той или иной марки автомобиля имеет под капотом турбированный мотор. Это первая причина, по которой владельцы устанавливают турбину на авто. Кроме того, турбонагнетатель имеет свойство со временем изнашиваться. В этом случае нужна замена турбины.

    В чем преимущества турбин на автомобиле?

    Турбированный силовой агрегат приобретает все большую популярность, и для этого есть множество причин, поскольку перечень преимуществ турбонагнетателя весьма обширен. Привлекательность турбины состоит в следующем:

    • значительное увеличение мощности транспортного средства;
    • существенное снижение топливного расхода;
    • быстрая окупаемость турбины, что зависит от частоты использования автомобиля;
    • экономия, поскольку имеющийся в машине двигатель не требуется менять на более мощную версию, что достаточно дорого;
    • стабильность функционирования двигателя;
    • экологичность - у авто с турбированным двигателем наблюдается меньшая степень токсичности выхлопных газов.
    Как правильно выбрать турбину?

    Турбина и двигатель должны функционировать сбалансировано, и каждый тип мотора требует определенной турбины. Разумеется, лучше всего приобретать оригинальный турбонаддув, в этом случае производитель учитывает все особенности двигателей своих же автомобилей и выпускает турбины под конкретные силовые агрегаты, которые идеально им подходят. Поскольку такие турбины стоят недешево, стоит обратить внимание на неоригинальные модели, но выпускаемые известными изготовителями, имеющими лицензии на такое производство. В этом случае турбины на каждом этапе производства проходят тщательное тестирование.

    Каковы критерии выбора?

    При выборе турбины следует определиться с тремя основными факторами:

    Зачем автомобилю турбина и каковы ее преимущества? Видео

    howcarworks.ru

    Всё большее количество производителей автомобилей устанавливают турбину или турбокомпрессор. Популярность этого агрегата в последнее время значительно возросла. Но чем обусловлен столь высокий интерес производителей машин к установке турбин?

    Для чего используется турбина в автомобиле?

    Турбина представляет собой технически сложный агрегат, позволяющий существенно увеличить мощность мотора машины даже с небольшим объёмом двигателя. Сегодня все производители автомобилей озадачились снижением расхода топлива ввиду его значительного подорожания.

    Но установка мотора малой мощности на машину среднего и премиум диапазона со значительной массой способна превратить езду в настоящее мучение. Удовольствие от поездок на маломощном автомобиле будет сомнительным. Именно турбина своим появлением позволила решить проблему повышения мощности мотора без увеличения его объёма.

    Как работает турбина?

    Турбина нагнетает большое количество воздуха в цилиндры двигателя машины. Всё это даёт возможность получить обогащённую воздушно-топливную смесь, значительно увеличивающую мощность мотора. После нажатия на педаль газа автомобиль словно получает невидимый «пинок» значительно ускоряясь. Именно так работает агрегат.

    С одинаковой эффективностью турбина может использоваться как на дизельном, так и бензиновом моторе. Конструктивно турбокомпрессор и двигатель транспортного средства представляют собой единое целое. Принцип работы агрегата достаточно простой. Именно поэтому ресурс эксплуатации турбины одинаков с ресурсом мотора машины при условии правильной эксплуатации и своевременного ухода.

    Основные причины выхода из строя турбины?

    Причины выхода из строя автомобильных турбин могут быть различные и зависят от одного или совокупности факторов:

    Турбокомпрессор автомобиля достаточно требователен к уходу и нуждается в правильной эксплуатации. Необходимо помнить, что ремонт турбины достаточно дорогое удовольствие.

    Как можно определить выход из строя турбины?

    Опытные водители достаточно просто могут определить неисправность турбины автомобиля. Но зачастую подобная диагностика не может установить, что именно привело к поломке агрегата.

    Среди основных признаков неисправности турбокомпрессора можно выделить следующие:

    • появление неприятного свиста под капотом машины при разгоне;
    • значительные подтеки масла в районе установки турбины или интеркулера;
    • включение значка неисправности двигателя на панели приборов;
    • значительное снижение мощности мотора.

    При выявлении вышеперечисленных признаков необходимо как можно быстрее обратиться за помощью к специалистам. Они, используя специальное оборудование, смогут установить причину выхода из строя турбокомпрессора. Сегодня необязательно приобретать новую турбину можно провести капитальный ремонт неисправного агрегата.

    Спасибо за внимание, удачи вам на дорогах.

    www.avtogide.ru

    Для чего нужна турбина в автомобиле, машине, видео

    На вырабатываемую автомобилем мощность оказывает непосредственное влияние степень наполнения его цилиндров топливно-воздушной смеси. Чтобы увеличить уровень обогащения указанной смеси, производители автомобилей устанавливают на них дополнительные нагнетатели или турбокомпрессоры.

    Популярность турбин на автомобиле

    Среди автолюбителей турбированный двигатели в машине становится все более популярным. Привлекательность такого вида двигателей стала возможной за счет следующих факторов:


    Взвесив вышеуказанные плюсы, автолюбители стремятся приобретать машины, на которых производителем уже установлен турбированный двигатель, либо самостоятельно монтировать турбину на имеющемся автомобиле. Помимо повышения мощности, турбина позволит сэкономить деньги автолюбителя.

    golifehack.ru

    Турбонаддув - история изобретения и принцип работы

    Под турбонаддувом принято понимать метод, основанный на агрегатном наддуве, который подразумевает использование отработанных газов в качестве источника энергии. При этом главным компонентом системы можно считать турбокомпрессор, а в некоторых случаях турбонагнетатель, оснащенный механическим приводом.

    Экскурс в историю

    Турбокомпрессоры стали известны в то время, когда создавались первые образцы тепловых двигателей, где энергия топлива преобразовывалась в механическую работу (ДВС). В период с 1885 по 1896 г. Рудольф Дизель вместе с Готлибом Даймлером проводил исследования, направленные на увеличение мощности, а также снижения затрат топлива, посредством сжатия воздуха, который нагнетался непосредственно в камеру сгорания.

    При этом в 1905 г. произошло важное событие, обусловленное деятельностью инженера Альфреда Бюхи, который смог достичь глобального увеличения мощности (120%) с помощью процесса нагнетания выхлопных газов. Спустя шесть лет Бюхи получил патент, закрепивший метод турбонаддува.

    Изначально турбокомпрессоры применяли в двигателях, отличавшихся серьезными размерами, например, устанавливаемые на кораблях. Что касается авиации, то турбокомпрессоры нашли свое применение еще на заре военного авиастроения, когда ими оснащались двигатели Рено, предназначенные для установки на истребителях. В дальнейшем развитие авиационных турбонагнетателей шло форсированными темпами. Так, в 1938 г. американцы оснастили турбонагнетателями двигатели истребителей и бомбардировщиков, а в 1941 г. был предложен проект истребителя P-47, имевший в своем составе турбонагнетатель, который значительно улучшал летные характеристики.

    В свою очередь, автомобильная промышленность впервые стала эксплуатировать турбокомпрессоры на грузовых автомобилях. Значительно позже получили массовое распространение турбины, предназначенные для легковых автомобилей. На американский рынок уже в начале шестидесятых годов поступили две модели с турбодвигателями, которые достаточно быстро исчезли, так как наряду с техническими преимуществами уровень надежности был минимален.

    Спустя десятилетие, турбодвигатели стали неотъемлемой частью автомобилей Formula 1, что сказалось на росте популярности турбокомпрессоров. Именно с этого времени приставка «турбо» вошла в обиход и стала модной. В основной своей массе производители автомобилей этого периода старались предложить на рынок хотя бы одну модель, оснащенную бензиновым турбодвигателем. Подобное положение вещей продолжалось относительно недолго, так как мода на турбодвигатели пошла на спад. В большей мере это связано с тем, что турбокомпрессор наряду с увеличением мощности также значительно увеличивал и расход топлива.

    Реинкарнацией турбокомпрессора можно считать 1977 г., когда в массовое производство поступил Saab 99 Turbo. Через год на рынке появился Mercedes-Benz 300 SD, который стал первым автомобилем с турбодвигателем на дизельной основе. Затем последовала модель VW Turbodiesel, где турбокомпрессор увеличивал эффективность дизельного двигателя до планки бензинового агрегата, а потребление топлива значительно снижалось.

    В принципе, дизельные двигатели отличаются высокой степенью сжатия, что соотносится с адиабатным расширением на рабочем ходе и предполагает более низкую температуру выхлопных газов. Это обстоятельство позволяет не выдвигать к жаропрочности турбины жесткие требования, что дает возможность удешевить конструкцию силового агрегата в целом. Данное условие объясняет тот факт, что турбины в основном устанавливают на дизельных двигателях, а не бензиновых.

    Принцип работы турбонаддува

    Основа турбонаддува – это обуздание энергии, которая создается с помощью отработавших газов. Крыльчатка турбины, закрепленная на валу, оказывается в области воздействия выхлопных газов, что приводит к ее раскручиванию совместно с лопастями компрессора, служащего для нагнетания воздуха в цилиндры двигателя. В этом случае создаются условия, когда двигатель получает более значительный объем воздуха, смешанный с топливом. Это достигается благодаря тому, что воздух поступает в цилиндры под давлением, то есть принудительно, и в меньшей мере за счет разрежения, которое создается поршнем.

    В основном турбодвигатели отличаются минимальным эффективным расходом топлива (г/(кВт·ч)), что соотносится с высокой литровой мощностью (кВт/л). При этом данные характеристики оказывают влияние на увеличение мощности мотора без повышения оборотов силового агрегата.

    В связи с тем, что происходит значительное увеличение массы воздуха, которая подвергается сжатию в цилиндрах, происходит рост температуры, а это может послужить причиной детонации. Чтобы этого избежать, предусмотрены конструктивные особенности турбодвигателей, основанные на: уменьшении степени сжатия, применении высокооктановых марок топлива и использовании интеркулера, являющегося промежуточным охладителем наддувочного воздуха. Также для поддержания эффективности всей системы используется уменьшение температуры воздуха, что обусловливается необходимостью сохранения его параметра плотности в нужном значении, так как происходит нагрев воздуха от сжатия.

    Элементы системы

    • Турбокомпрессор и интеркулер.
    • Регулировочный клапан, предназначенный для контроля давления.
    • Перепускной клапан, служащий для перемещения наддувочного воздуха во впускные патрубки и далее до турбины в том случае, если дроссельная заслонка закрыта.
    • Стравливающий клапан, применяемый при отсутствии датчика, контролирующего массовый расход топлива. Его предназначение – это сброс наддувочного воздуха в окружающую среду.
    • Выпускной коллектор, отличающийся совместимостью с турбокомпрессором.
    • Герметичные патрубки, подразделяющиеся на воздушные и масляные. Первые осуществляют подачу воздуха во впуск, а вторые – смазку и охлаждение турбокомпрессора.

    Считается, что престижный автомобиль просто обязан быть динамичным. Да и любому спешащему автолюбителю хочется победить время скоростью своего коня, без глобальных на это затрат топлива. И вот сегодня, в 21 веке, под массивным капотом скрыт скромный четырехцилиндровый рядный блок, разгоняющий до 100 км/час даже достаточно массивную машину за несколько секунд. А все потому, что у него есть турбина — приспособление, которое применяется в моторах с турбонаддувом.

    Принцип действия турбины

    Турбина, как инженерное творение было придумано и разработано в 1905 году швейцарцем Альфредом Буше. Он получил патент на компрессор, который приводился в действие за счет отработанных газов автомобиля. Целью его долгого пути развития и усовершенствования является повышение топливной эффективности.

    Чтобы увеличить мощность при уменьшении рабочего объема двигателя, нужно в той же камере сгорания сжечь больше бензина. С химической точки зрения, сгорание – это реакция окисления, окислителем в которой считается кислород. Нужно умудриться забрать с внешней атмосферы больше воздуха. То есть, для решения проблемы, необходимо повысить количество топливно-воздушной смеси, подаваемую на двигатель.

    Суть же турбины вот в чем: выпускающиеся под давлением из выпускного коллектора газы, попадают в систему выхлопа, вращая, как крылья мельницы, колесо с лопатками — турбину. В то же время, закрепленный с ней на одном валу, компрессор начинает нагнетать в цилиндры дополнительный воздух, тем самым повышая так недостающее количество окислителя в камере сгорания. Число оборотов турбины тесно связано с давлением газов в, так называемой, горячей части. Управлять ими можно при помощи специального клапана. В холодной части работает нагнетатель, доставляющий дополнительную порцию атмосферного воздуха во впускной коллектор. То есть, можно условно разделить турбонагнетатель на ротор и компрессор. Если потребление окислителя резко сокращается, например, при сбросе газа, когда ротор еще инерционно крутится, излишний воздух удаляется через специальный клапан впускного коллектора, называемый «блоу оф».

    В отличие от механических нагнетателей в турбонаддуве нет отбора мощности от двигателя, а значит, КПД такой конструкции должен быть намного выше.

    Этот круговорот вторичного использования энергии продуктов сгорания топлива эффективно повышает мощность двигателя.

    Проблемы турбированных двигателей и их решение

    И даже в работе такого гениального изобретения, как турбина, есть свои скрытые негативные стороны.

    А дело в том, что пока мотор не раскрутится до определенных оборотов, турбина практически не работает. А начав работать, превращает смирный атмосферный мотор в ревущего хищника. Это, как два двигателя в одном: если едешь не торопясь, он ведет себя просто как маломощный мотор. Но, когда нужна дополнительная мощность, например, при обгоне, турбонаддув действует как пинок, ускоряющий автомобиль, будто под капотом находится мотор большего объема. Другими словами, на малых оборотах количество газов совсем небольшое, и их скорость и давление также мало. Поэтому и турбина раскручивается до совсем небольших оборотов, и толку от компрессора с его подачей дополнительного воздуха почти равно нулю. В результате этого непредвиденного дефекта на низах мотора отсутствует нужная мощность. И только примерно с 4000 об/мин турбонаддув «выстреливает».

    Обороты, при которых турбина и компрессор начинают работать эффективно, называются «турбо-зоной», а процесс преодоления более низкого диапазона оборотов закрепилось в названии «турбо-яма».

    Для борьбы с таким дефектом можно поставить две турбины вместо одной, по одному нагнетателю на каждую долю блока цилиндров. Такую схему часто называют «би-турбо». Или установить механический нагнетатель, помогающий мотору на низких оборотах. Если турбина все-таки одна, то современные многоступенчатые трансмиссии позволяют передать передаточные числа таким образом, что турбо-яма в принципе не ощущается, фактически мотор не покидает турбо-зоны. Исключение составляет только момент, когда нужно двинуться с места.

    Еще один не оставленный без внимания нюанс – это то, что турбина, компрессор и все его компоненты работают в зоне самых высоких температур, так как выхлопные газы достигают температуры в 2500-3000 градусов С. Кроме того, так как турбокомпрессор нагнетает воздух двигателя под давлением, плюс еще давление, создаваемое клапанами в цилиндре, воздух в камерах сильно нагревается. Его температура может подниматься до температур, достаточных для возникновения детонации. Поэтому в комплексе с турбиной под капот устанавливают специальный охладитель, называемый «интеркуллер», обладающий также дополнительными положительными свойствами. В основном моторы с турбонагнетателем рассчитывают только на высокооктановый бензин.

    Турбина на авто – и мечта, и реальность

    Долгое время турбонаддув оставался исключительно дизельным явлением. Однако рост цен на нефть быстро вернул инженеров к мысли о необходимости срочной модернизации всей линейки двигателей. За что нам и можно сказать спасибо! Ведь это и привело к возможности любого желающего стать обладателем скоростного авто, всего лишь приобретя комплекс с турбонаддувом, полностью готовый к эксплуатации, с уже устраненными проблемами, наполненный сплошными плюсами и позволяющий получать лишь удовольствие от езды.

    С появлением на рынках турбин, появилось множество других нововведений, таких как подшипники с керамическими шариками , которые сами по себе заполнены смазкой, и другие. Также турбонаддув помог в решении такой проблемы, как снижение рабочего объема двигателей при сохранении необходимой мощности . Что, в свою очередь, уменьшает выбросы, радуя экологов.

    Неизвестно, что будет под капотами автомобилей лет через 20 – ближайшее будущее мы смело можем именовать турбо эрой.

    Турбина (турбокомпрессор) стала определяющим агрегатом в деле увеличения мощности моторов.

    Что такое турбина и для чего она нужна?

    Турбина — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
    Главное назначение турбины – с ее помощью можно значительно увеличить мощность автомобиля. При увеличении давления во впускном коллекторе на 1 атмосферу в камеру сгорания попадет в два раза больше кислорода, а значит от небольшого турбового двигателя можно ожидать мощности как от атмосферника с объемом в два раза больше — грубая теоретическая арифметика не лишенная смысла…

    Принцип работы турбокомпрессора

    Принцип работы турбины несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.

    Турбина состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.

    В процессе работы турбина подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.

    Частота вращения вала турбины достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах служит так е системой охлаждения подшипниковой части турбины.

    Система охлаждения турбин

    Система охлаждения турбин двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора.
    Существует два самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.

    Оба способа имеют ряд преимуществ и недостатков.
    Охлаждение маслом.
    Преимущества:

    • Более простая конструкция
    • Меньшая стоимость изготовления самой турбины

    Недостатки:

    • Меньшая эффективность охлаждения по сравнению с комплексной системой
    • Более требовательна к качеству масла и к его более частой смене
    • Более требовательна к контролю за температурным режимом масла

    Изначально, большинство серийных двигателей с турбонаддувом оснащались тубинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось. Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию и дорогостоящему ремонту. Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.

    Комплексное охлаждение маслом и антифризом
    Преимущества:

    • Большая эффективность охлаждения

    Недостатки:

    • Более сложная конструкция самого турбокомпрессора, как следствие большая стоимость

    При охлаждении турбины маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а , который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу. Как следствие увеличивается стоимость самой конструкции.

    При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться — промежуточный охладитель воздуха.

    Нагрев воздуха не единственная проблема, с которой пытаются справиться конструкторы при проектировании турбодвигателя. Насущной проблемой является инерционность турбины (лаг турбины, турбояма) — задержка в реакции мотора на открытие дроссельной заслонки. Турбина выходит на пик своих возможностей при определенных оборотах двигателя, отсюда и появилось мнение, что турбина включается при определенных оборотах. Турбина в большинстве случаев, работает всегда, а значение оборотов при которых ее эффективность максимальная у каждого двигателя и у каждой турбины разные. В погоне за решением этой проблемы появились системы их двух турбин (твин-турбо , twin-turbo , би-турбо , biturbo ), твин-скрол (twin-scroll ) турбины, турбины с изменяемой геометрией сопла и изменяемым углом наклона крыльчатки (VGT ), изменяются материалы частей чтобы повысить прочность и увеличить вес (керамические лопатки крыльчатки) и пр.

    Twin-turbo (твин-турбо) — система при которой используются две одинаковые турбины. Задача данной системы повысить объем или давление поступающего воздуха. Используется когда необходима максимальная мощность на высоких оборотах, например в драг-рейсинге. Такая система реализована на легендарном японском автомобиле Nissan Skyline Gt-R с двигателем rb26-dett.

    Такая же система, но с маленькими одинаковыми турбинами позволяет добиться прироста мощности при небольших оборотах и держать наддув постоянным до красной зоны.

    Biturbo (би-турбо) — систем а с двумя разными турбинами, которые соединены последовательно. Система устроена таким образом, что при низких оборотах работает маленькая турбина, обеспечивая хороший отклик на малых оборотах, при определенных условиях «включается» большая турбина и обеспечивает наддув при высоких оборотах. Это позволяет автомобилю уменьшить лаг двигателя и получить хороший прирост производительности во всем диапазоне работы двигателя.

    Такая систем турбонаддува используется в автомобилях BMW biturbo.

    Турбина с изменяемой геометрией (VGT ) — система при которой лопатки крыльчатки в горячей части могут изменять угол наклона к потоку выхлопных газов.

    При малых оборотах двигателя пропускное сечение прохода выхлопных газов становится более узкое и «выхлоп» проходит с большей скоростью и большей отдачей энергии. Когда обороты двигателя увеличиваются проходное сечение становится шире и и уменьшается сопротивление движению выхлопных газов, но при этом достаточно энергии для создания необходимого давления компрессором. Чаще систему VGT используют на дизельных двигателях т.к. там меньше тепловые нагрузки, меньшая скорость вращения ротора турбины.

    Twin-scroll (двойная улитка) — система состоит из двойного контура движения выхлопных газов энергия которых вращает один ротор с крыльчаткой и компрессором. При этом существует два типа реализации когда выхлопные газы идут по обоим контурам сразу, при этом система работает как twin-turbo в одном корпусе — выхлопные газы делятся на два потока каждый из которых идут в свой контур горячей части раскручивая ротор турбины. Второй тип реализации работает на подобии системы biturbo — горячая часть имеет два контура с разной геометрией, при низких оборотах выхлопные газы направляются по меньшему контуру, который увеличивает скорость и энергию прохождения за счет небольшого диаметра, при повышении оборотов двигателя выхлопные газы двигаются по контуру диаметр которого больше — тем самым сохраняется рабочее давление в системе впуска и не создается запора на пути выхлопных газов. Это все регулируется клапанами, которые переключают поток из одного контура в другой.

    Автомобильные турбокомпрессоры являются ключевым компонентом для увеличения мощности любого автомобиля. В последние годы все больше новых автомобилей стали оснащаться турбинами. Благодаря турбокомпрессорам автопроизводители не только повышают мощность автомобилям, но и делает их выхлоп экологически чище. К сожалению, помимо плюсов, есть и минусы при использовании автомобильных турбин. Главный минус- это турбокомпрессора. К счастью, существуют некоторые рекомендации, которые позволяют увеличить срок службы компонентов турбонаддува. Предлагаем вам узнать, как работают турбокомпрессоры в современных автомобилях, а также узнать, как вы можете предотвратить преждевременный выход турбины из строя.

    Приобретая в наши дни новый автомобиль, скорее всего, он будет оснащен турбированным двигателем, благодаря чему транспортное средство имеет неплохую мощность, низкий расход топлива и более чистый выхлоп. Давайте подробнее узнаем, что же такое турбокомпрессор, а также узнаем самые важные факты о нем. В том числе, мы расскажем о самых частых дефектах и поломках автомобильных турбин.

    На сегодняшнем рынке пока не все автомобили оснащаются турбинами. Но уже через несколько лет купить машину без турбированного мотора у вас вряд ли получится. Причем это касается не только бензиновых моделей автомобилей. Дело в том, что турбиной оснащаются, в том числе, и дизельные двигатели.

    Так что турбокомпрессоры в наши дни стали неотъемлемой частью большинства современных автомобилей. Но, несмотря на то, что турбированные двигатели стали очень популярны несколько лет назад, технология двигателей, оснащенных турбокомпрессорами, появилась уже более 100 лет назад.

    В 1905 году Швейцарский изобретатель Альфред Бучи изобрел систему нагнетания, которая работала от выхлопных газов в двигателе внутреннего сгорания. Смысл этого изобретения прост и основан на принципе работы лопастей ветряной мельницы, которые вращаются потоком ветра. Только вместо ветра в изобретении Альфреда использовался выхлоп отработанных газов силового агрегата, который и вращал лопасти.

    К сожалению, в те годы Альфреду удалось получить только патент на изобретение. Увы, построить партию опытных образцов у изобретателя не было возможности.

    В 1913 Французский профессор Огюст Рато впервые в мире оснастил самолет турбокомпрессором, основанным на изобретении Бучи.

    В 1915 году Альфред Бучи построил прототип корабля, оснащенного дизельным двигателем с турбиной.

    Позднее, турбокомпрессоры , где перевернули представление о мощности автомобилей.

    Недавно автопроизводители вспомнили о технологиях турбированных моторов, которые намного эффективнее обычных двигателей. В первую очередь автомобильные компании стали оснащать турбокомпрессорами дизельные маломощные двигатели. В итоге, благодаря турбонаддуву многие современные дизельные моторы по мощности приблизились к бензиновым силовым агрегатам.

    В итоге сегодня турбомоторы стали незаменимыми для автопроизводителей, которые вынуждены подстраиваться под новые экологические нормы, которые действуют в США и Европе. Благодаря использованию турбокомпрессоров, современные автомобили стали намного экономичнее, мощнее, а также имеют низкий уровень вредных веществ в выхлопе.

    В конечном итоге все современные автомобили в наши дни, выпускаемые в автопромышленности, являются самыми экологическими чистыми за всю историю автомира.

    Функция турбины, настройка и ее дефекты

    Функция турбокомпрессора заключается в том, чтобы увеличивать выходную . Благодаря турбине производители могут уменьшать количество рабочих цилиндров в двигателе без снижения мощности и крутящего момента.

    Например, только трехцилиндровый 1,0 литровый турбомотор может выдавать мощность в 90 л.с. Добиться такой же производительности обычный бензиновый трехцилиндровый мотор без дорогостоящих модификаций не сможет ни один автопроизводитель.

    Также 1,0 литровый имеет более низкий расход топлива и небольшой уровень выхлопных газов СО2.

    Именно поэтому турбированные моторы стали очень распространенными в малолитражных бензиновых автомобилях за последние несколько лет.

    Также все чаще стали выпускаться дизельные двигатели с двумя турбинами (Bi-Turbo), что позволяет производителям не только добиваться потрясающий мощности от дизельных автомобилей, но снижать уровень вредных веществ в выхлопе до рекордных значений.

    В большинстве случаев работа современных турбокомпрессоров основана на тех же принципах, которые создал Швейцарский изобретатель Альфред Бучи. То есть большинство турбин в современных автомобилях работают от давления, образующего от выхлопных газах в камере сгорания двигателя.

    Недавно также стали появляться турбины, которые могут работать, как от электричества, так и традиционно от газа, поступающего из выхлопной системы. Благодаря этому инженеры добились максимальной мощности и крутящего момента при небольших оборотах двигателя. Например, подобная турбо технология используется в дизельном 4,0 литровом моторе , который устанавливается на .

    Эксплуатация и техническое обслуживание автомобильных турбин

    С каждым годом во всем мире ужесточаются экологические требования к выхлопу современных автомобилей. В результате все больше новых автомобилей оснащаются турбинами. Таким образом автопроизводители пытаются выпускать автомобили, которые будут соответствовать жёстким экологическим нормам. Увы, без использования турбин в современных автомобилях добиться сокращения уровня вредных веществ в выхлопе без миллиардных инвестиций невозможно.

    Наше интернет издание в связи с массовой распространенностью турбированных двигателей в автопромышленности решила собрать для вас все самые важные вопросы и ответы об автомобильных турбокомпрессорах, об их техническом обслуживании, также о многом другом:

    Как работает турбина в автомобиле?

    Работа турбокомпрессора основана на принципе увеличения мощности двигателя внутреннего сгорания за счет большого количества воздуха (кислорода) необходимого для воспламенения топлива в камере сгорания. То есть автомобильная турбина больше не делает ничего кроме поставки двигателю большой массы кислорода.

    Воздух из турбины подается непосредственно во впускное отверстие цилиндра двигателя.

    Чтобы привести лопасти турбины в движение компрессор турбо нагнетателя использует для этого выхлопные газы двигателя. Для этого используется : преобразование тепловой энергии в кинетическую (горячие выхлопные газы начинают вращать лопатки турбины, которые и направляют большие потоки кислорода в двигатель, за счет чего и увеличивается мощность).

    Что такое турбо лаг (турбо-яма)?

    Количества выхлопных газов на низких скоростях автомобиля (низкие обороты двигателя) не достаточно для приведения в действие работы турбины турбокомпрессора. Именно поэтому турбина может создать достаточное давление воздуха для подачи в двигатель только при движении машины на средней скорости (средние обороты двигателя).

    Давление топлива в турбированных автомобилях регулируется в зависимости от давления турбонагнетателя. То есть, если обороты двигателя маленькие, то давление топлива будет небольшое и топливная смесь будет не богатой кислородом из-за того, что турбокомпрессор не будет давать достаточного давления кислорода. То же самое происходит не только на малых оборотах двигателя, но и при резком нажатии на педаль газа с места. В этот момент машина не начнет максимально динамичный разгон, так как крыльчатке турбокомпрессора будет не хватать необходимого давления выхлопных газов для создания сжатого потока кислорода и подаче его в камеру сгорания двигателя. В итоге на короткое время в двигателе будет наблюдаться дефицит топливной смеси для эффективного воспламенения (кислород+топливо). Это и приводит к кратковременной задержке разгона, которая и называется турбо-лаг или "турбо яма". Вот почему многие владельцы турбированных автомобилей часто жалуются, что при резком разгоне с малых оборотов двигателя автомобиль после нажатия педали газа на 1-2 секунду не сразу реагирует на увеличение оборотов двигателя.

    В некоторых премиальных автомобилях в последние годы стали появляться по две или даже три турбины, которые решают проблему турбо-ям (одна турбина работает при маленьких оборотах двигателя, другая включается на более высокой скорости работы мотора). Также недавно стали появляться турбокомпрессоры с адаптивными крыльчатками (регулируемые лопатки в турбине), которые умеют адаптироваться к любому диапазону оборотов двигателя. Таким образом достигается высокий крутящий момент автомобиля на низких скоростях.

    В чем разница между турбокомпрессором и турбонагнетателем (турбонаддув)?

    Функция их проста: сжатие всасываемого воздуха и подача его в камеру сгорания двигателя. Но, несмотря на одинаковый смысл работы между двумя видами турбин, существуют отличия.

    Главное отличие двух видов турбин это система их питания.

    Турбокомпрессор получает питание от ременного привода, который передает крутящий момент двигателя на турбину, точно также, как силовой агрегат передает с помощью ремней и роликов крутящий момент на электрический генератор автомобиля, который заряжает аккумуляторную батарею. То есть, по сути, турбокомпрессор питается от электричества.

    Что касаемо турбонагнетателя или турбонаддува, то этот вид турбин работает от выхлопных газов. Как мы уже сказали выше, после нагнетания кислорода он подается под давлением в камеру сгорания увеличивая крутящий момент двигателя и его .

    Срок службы турбокомпрессора

    Еще недавно турбокомпрессоры были ненадежны и часто выходили из строя, даже при надлежащем уходе. Современные компрессоры стали более надежны и некоторые из них имеют срок службы сравнимым с ресурсом двигателя. Тем не менее, для того чтобы турбина проработала как можно дольше, она нуждается в обслуживании и регулярном техническом осмотре для выявления на начальном этапе каких-либо неисправностей.

    Во-первых, владельцы турбированных автомобилей ни в коем случае не должны затягивать с плановой заменой моторного масла и воздушного фильтра, поскольку даже малейшее загрязнение фильтра и масла могут негативно сказываться на работоспособности турбины и ее срока службы. То есть, если в автомобиле с обычным двигателем вы можете без особого вреда запаздывать с плановой заменой масла и воздушного фильтра, то в турбированных силовых агрегатах плановое ТО должно быть проведено даже немного раньше, чем рекомендовано автопроизводителем. Особенно это касается нашей страны, где качество топлива оставляет желать лучшего.

    Также турбины требуют постоянной диагностики, чтобы вовремя заметить возможные неисправности. Главная задача не допустить увеличения давления наддува, которое может не только вывести из строя турбокомпрессор, но и серьезно повредить двигатель.

    Можно ли с помощью тюнинга оснастить автомобиль с обычным двигателем турбокомпрессором?

    Благодаря современным турбосистемам, фактически любая машина может быть оборудована турбонаддувом. В большинстве случаев для этого необходимо обратиться в специализированное тюнинг-ателье или автомастерскую. Перед установкой турбины специалисты проверят, выдержит ли ваш двигатель повышение мощности за счет турбонаддува. Также специалисты проведут диагностику топливной системы, которая играет важное значение в турбированных двигателях.